[1]
A. Goldman, Modern ferrite technology. Van Nostrand Reinhold, New York (1990).
Google Scholar
[2]
R.J.D. Tilley, Understanding Solids: The science of materials, John Wiley and Sons, (2004) 376.
Google Scholar
[3]
D.H. Chen, X.R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Mater. Res. Bull. 36 (2001) 1369-1377.
DOI: 10.1016/s0025-5408(01)00620-1
Google Scholar
[4]
H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223–315.
Google Scholar
[5]
J.H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev. 87(1987)877–899.
DOI: 10.1021/cr00081a002
Google Scholar
[6]
J.K. Sharma, P. Srivastava, S. Singh, G. Singh, Review on the catalytic effect of nanoparticles on the thermal decomposition of ammonium perchlorate, Energy Environ. Focus 3 (2014) 121-130.
DOI: 10.1166/eef.2014.1079
Google Scholar
[7]
S. Zhao, D. Ma, Preparation of CoFe2O4nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate, Journal of Nanomaterials, Vol. 2010, Article ID 842816, p.5.
DOI: 10.1155/2010/842816
Google Scholar
[8]
T. Liu, L. Wang, P. Yang, B. Hu, Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate, Materials Letters 62(2008) 4056–4058.
DOI: 10.1016/j.matlet.2008.04.081
Google Scholar
[9]
G. Singh, I.P.S. Kapoor, S. Dubey, P.F. Siril, J.H. Yi, F.Q. Zhao, R.Z. Hu, Effect of mixed ternary transition metal ferrite nanocrystallites on thermal decomposition of ammonium perchlorate, Thermochim. Acta 477 (2008) 42–47.
DOI: 10.1016/j.tca.2008.08.005
Google Scholar
[10]
G. Singh, I.P.S. Kapoor, S. Dubey, P.F. Siril, Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metalferrites, Propell. Explos. Pyrotech. 34(2009)72–77.
DOI: 10.1002/prep.200900017
Google Scholar
[11]
P. Srivastava, I.P.S. Kapoor, G. Singh, Nanoferrites: preparation, characterization, and catalytic activity, J. Alloys Compd. 485 (2009) 88–92.
DOI: 10.1016/j.jallcom.2009.05.118
Google Scholar
[12]
A. Han, L. J. Liao, M. Ye, Y. Li, X. Peng, Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate, Chinese J of Chemical Engineering, 19 (2011) 1047-1051.
DOI: 10.1016/s1004-9541(11)60090-6
Google Scholar
[13]
G. Singh, I.P.S. Kapoor, R. Dubey, P. Srivastava, Praparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants, Part: 79, Thermochim. Acta 511(2010)112–118.
DOI: 10.1016/j.tca.2010.08.001
Google Scholar
[14]
S. Singh, Pratibha Srivastava, Gurdip Singh, Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89, Materials Research Bulletin 48 (2013) 739–746.
DOI: 10.1016/j.materresbull.2012.11.015
Google Scholar
[15]
W. H. Bragg, The structure of magnetite and the spinels, Nature 95 (1915) 561.
Google Scholar
[16]
W. H. Bragg, The structure of the spinel group of crystals, Phil. Mag. 30 (1915) 305-315.
Google Scholar
[17]
T.R. Mehdiye, A.M. Gashimov, A.A. Habibzade, Electromagnetic processes in frequency-dependent resistor sheath. Fizika Cild Xiv 3 (2008) 80-88.
Google Scholar
[18]
S. M. Daliya, R. S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical Engineering Journal 129 (2007) 51–65.
DOI: 10.1016/j.cej.2006.11.001
Google Scholar
[19]
M. Atif, S. K. Hasanian, M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Communications 138 (2006) 416-421.
DOI: 10.1016/j.ssc.2006.03.023
Google Scholar
[20]
H. Li, H.Z. Wu, G.X. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4, Powder Technol. 198 (2010) 157-166.
DOI: 10.1016/j.powtec.2009.11.005
Google Scholar
[21]
A. Kale, S. R. Gubbala, D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique, J. Magn. Magn. Mater. 277(2004) 350-358.
DOI: 10.1016/j.jmmm.2003.11.015
Google Scholar
[22]
J.P. Hochepied, J.F. Bonville, M.P. Pileni, Non stoichiometric Zinc Ferrite nancrystals: Syntheses and magnetic properties, J. Phys. Chem. 104 (2000) 905-912.
DOI: 10.1021/jp991626i
Google Scholar
[23]
K. Praveena, K. Sadhana, H.S. Virk, Structure and magnetic properties of Mn-Zn ferrites synthesized by microwave-hydrothermal process, Solid State Phenomena, 232 (2015) 45-64.
DOI: 10.4028/www.scientific.net/ssp.232.45
Google Scholar
[24]
P.P. Sarangi, S.R. Vadera, M.K. Patra, Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method, Powder Technology 203 (2010) 348–353.
DOI: 10.1016/j.powtec.2010.05.027
Google Scholar
[25]
J.P. Jacobs, A. Maltha. J.G.H. Reintjes, J. Drirnal, Y. Ponec, H.H. Brongersma, The surface of catalytically active spinels, J. Catal. 147 (1994) 294-300.
DOI: 10.1006/jcat.1994.1140
Google Scholar
[26]
G. Singh, S.P. Felix, Effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AN, Combust. Flame 132 (2003) 422-432.
DOI: 10.1016/s0010-2180(02)00479-0
Google Scholar
[27]
G. Singh, I.P.S. Kapoor, D.K. Pandey, Hexamine metal perchlorate as high energetic burning rate modifiers, J. Energy Mater. 20 (2002) 223-244.
DOI: 10.1080/07370650208244822
Google Scholar
[28]
V.V. Boldyerv, Thermal decomposition of ammonium perchlorate, Thermochim. Acta 443 (2006) 1-36.
Google Scholar
[29]
M.E. Brown, D. Dollomore, A.K. Galway, Reactions in the solid state comprehensive chemical kinetics, Elsevier, Amsterdam, The Netherlands, (1960) 1-340.
Google Scholar
[30]
E.S. Freeman, S. Gardon, The application of the absolute rate theory to the ignition of propagatively reacting systems. the thermal ignition of the systems lithium nitrate–magnesium, sodium nitrate–magnesium, J. Phys. Chem. 60 (1956) 867-871.
DOI: 10.1021/j150541a008
Google Scholar
[31]
J. Zinn, R.N. Rogers, Thermal initiation of explosives, J. Phys. Chem. 66 (1962) 2646-2653.
DOI: 10.1021/j100818a069
Google Scholar
[32]
P.W.M. Jacobs, G.S. Pearson, Mechanism of the decomposition of ammonium perchlorate, Combust. Flame 13 (1969) 419–430.
DOI: 10.1016/0010-2180(69)90112-6
Google Scholar
[33]
R.P. Rastogi, G. Singh, R.R. Singh, Burning rate catalysts for composite solid propellants, Combust. Flame 30 (1977) 117–124.
DOI: 10.1016/0010-2180(77)90057-8
Google Scholar
[34]
L. Dauerman, Catalyzed thermal decomposition of ammonium perchlorate, AIAA J. 5 (1) (1967) 192.
DOI: 10.2514/3.3941
Google Scholar
[35]
J.V. Davis, P.W.M. Jacobs, A. Russel Jones, Thermal decomposition of ammonium perchlorate, Trans. Faraday Soc. 63 (1967) 1737–1748.
DOI: 10.1039/tf9676301737
Google Scholar