Nanoferrites of Transition Metals and their Catalytic Activity

Article Preview

Abstract:

Recent applications of transition metal nanoferrites as catalyst in thermal decomposition of ammonium perchlorate (AP) and combustion of composite solid propellant (CSP), have been reviewed. Catalytic applications include the use of mainly cobalt, nickel, copper, zinc, manganese, cadmium nanoferrites, as well as their mixed-metal combinations. The nanoferrites are obtained mainly by wet-chemical, sol-gel, solvo-thermal, auto-combustion and co-precipitation methods. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperatures which shows their catalytic activity. The burning rates of CSPs have also been enhanced by these nanoferrites. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 241)

Pages:

126-138

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Goldman, Modern ferrite technology. Van Nostrand Reinhold, New York (1990).

Google Scholar

[2] R.J.D. Tilley, Understanding Solids: The science of materials, John Wiley and Sons, (2004) 376.

Google Scholar

[3] D.H. Chen, X.R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Mater. Res. Bull. 36 (2001) 1369-1377.

DOI: 10.1016/s0025-5408(01)00620-1

Google Scholar

[4] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (1989) 223–315.

Google Scholar

[5] J.H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev. 87(1987)877–899.

DOI: 10.1021/cr00081a002

Google Scholar

[6] J.K. Sharma, P. Srivastava, S. Singh, G. Singh, Review on the catalytic effect of nanoparticles on the thermal decomposition of ammonium perchlorate, Energy Environ. Focus 3 (2014) 121-130.

DOI: 10.1166/eef.2014.1079

Google Scholar

[7] S. Zhao, D. Ma, Preparation of CoFe2O4nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate, Journal of Nanomaterials, Vol. 2010, Article ID 842816, p.5.

DOI: 10.1155/2010/842816

Google Scholar

[8] T. Liu, L. Wang, P. Yang, B. Hu, Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate, Materials Letters 62(2008) 4056–4058.

DOI: 10.1016/j.matlet.2008.04.081

Google Scholar

[9] G. Singh, I.P.S. Kapoor, S. Dubey, P.F. Siril, J.H. Yi, F.Q. Zhao, R.Z. Hu, Effect of mixed ternary transition metal ferrite nanocrystallites on thermal decomposition of ammonium perchlorate, Thermochim. Acta 477 (2008) 42–47.

DOI: 10.1016/j.tca.2008.08.005

Google Scholar

[10] G. Singh, I.P.S. Kapoor, S. Dubey, P.F. Siril, Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metalferrites, Propell. Explos. Pyrotech. 34(2009)72–77.

DOI: 10.1002/prep.200900017

Google Scholar

[11] P. Srivastava, I.P.S. Kapoor, G. Singh, Nanoferrites: preparation, characterization, and catalytic activity, J. Alloys Compd. 485 (2009) 88–92.

DOI: 10.1016/j.jallcom.2009.05.118

Google Scholar

[12] A. Han, L. J. Liao, M. Ye, Y. Li, X. Peng, Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate, Chinese J of Chemical Engineering, 19 (2011) 1047-1051.

DOI: 10.1016/s1004-9541(11)60090-6

Google Scholar

[13] G. Singh, I.P.S. Kapoor, R. Dubey, P. Srivastava, Praparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP, HTPB and composite solid propellants, Part: 79, Thermochim. Acta 511(2010)112–118.

DOI: 10.1016/j.tca.2010.08.001

Google Scholar

[14] S. Singh, Pratibha Srivastava, Gurdip Singh, Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89, Materials Research Bulletin 48 (2013) 739–746.

DOI: 10.1016/j.materresbull.2012.11.015

Google Scholar

[15] W. H. Bragg, The structure of magnetite and the spinels, Nature 95 (1915) 561.

Google Scholar

[16] W. H. Bragg, The structure of the spinel group of crystals, Phil. Mag. 30 (1915) 305-315.

Google Scholar

[17] T.R. Mehdiye, A.M. Gashimov, A.A. Habibzade, Electromagnetic processes in frequency-dependent resistor sheath. Fizika Cild Xiv 3 (2008) 80-88.

Google Scholar

[18] S. M. Daliya, R. S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical Engineering Journal 129 (2007) 51–65.

DOI: 10.1016/j.cej.2006.11.001

Google Scholar

[19] M. Atif, S. K. Hasanian, M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Communications 138 (2006) 416-421.

DOI: 10.1016/j.ssc.2006.03.023

Google Scholar

[20] H. Li, H.Z. Wu, G.X. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4, Powder Technol. 198 (2010) 157-166.

DOI: 10.1016/j.powtec.2009.11.005

Google Scholar

[21] A. Kale, S. R. Gubbala, D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique, J. Magn. Magn. Mater. 277(2004) 350-358.

DOI: 10.1016/j.jmmm.2003.11.015

Google Scholar

[22] J.P. Hochepied, J.F. Bonville, M.P. Pileni, Non stoichiometric Zinc Ferrite nancrystals: Syntheses and magnetic properties, J. Phys. Chem. 104 (2000) 905-912.

DOI: 10.1021/jp991626i

Google Scholar

[23] K. Praveena, K. Sadhana, H.S. Virk, Structure and magnetic properties of Mn-Zn ferrites synthesized by microwave-hydrothermal process, Solid State Phenomena, 232 (2015) 45-64.

DOI: 10.4028/www.scientific.net/ssp.232.45

Google Scholar

[24] P.P. Sarangi, S.R. Vadera, M.K. Patra, Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method, Powder Technology 203 (2010) 348–353.

DOI: 10.1016/j.powtec.2010.05.027

Google Scholar

[25] J.P. Jacobs, A. Maltha. J.G.H. Reintjes, J. Drirnal, Y. Ponec, H.H. Brongersma, The surface of catalytically active spinels, J. Catal. 147 (1994) 294-300.

DOI: 10.1006/jcat.1994.1140

Google Scholar

[26] G. Singh, S.P. Felix, Effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AN, Combust. Flame 132 (2003) 422-432.

DOI: 10.1016/s0010-2180(02)00479-0

Google Scholar

[27] G. Singh, I.P.S. Kapoor, D.K. Pandey, Hexamine metal perchlorate as high energetic burning rate modifiers, J. Energy Mater. 20 (2002) 223-244.

DOI: 10.1080/07370650208244822

Google Scholar

[28] V.V. Boldyerv, Thermal decomposition of ammonium perchlorate, Thermochim. Acta 443 (2006) 1-36.

Google Scholar

[29] M.E. Brown, D. Dollomore, A.K. Galway, Reactions in the solid state comprehensive chemical kinetics, Elsevier, Amsterdam, The Netherlands, (1960) 1-340.

Google Scholar

[30] E.S. Freeman, S. Gardon, The application of the absolute rate theory to the ignition of propagatively reacting systems. the thermal ignition of the systems lithium nitrate–magnesium, sodium nitrate–magnesium, J. Phys. Chem. 60 (1956) 867-871.

DOI: 10.1021/j150541a008

Google Scholar

[31] J. Zinn, R.N. Rogers, Thermal initiation of explosives, J. Phys. Chem. 66 (1962) 2646-2653.

DOI: 10.1021/j100818a069

Google Scholar

[32] P.W.M. Jacobs, G.S. Pearson, Mechanism of the decomposition of ammonium perchlorate, Combust. Flame 13 (1969) 419–430.

DOI: 10.1016/0010-2180(69)90112-6

Google Scholar

[33] R.P. Rastogi, G. Singh, R.R. Singh, Burning rate catalysts for composite solid propellants, Combust. Flame 30 (1977) 117–124.

DOI: 10.1016/0010-2180(77)90057-8

Google Scholar

[34] L. Dauerman, Catalyzed thermal decomposition of ammonium perchlorate, AIAA J. 5 (1) (1967) 192.

DOI: 10.2514/3.3941

Google Scholar

[35] J.V. Davis, P.W.M. Jacobs, A. Russel Jones, Thermal decomposition of ammonium perchlorate, Trans. Faraday Soc. 63 (1967) 1737–1748.

DOI: 10.1039/tf9676301737

Google Scholar