Modification of the Magnetic Properties of Co2Y Hexaferrites by Divalent and Trivalent Metal Substitutions

Article Preview

Abstract:

The present study is concerned with the fabrication and characterization of Me2Y substituted hexaferrites, Ba2Me2Fe12-xTxO22 (Me = Co2+, Mg2+, and Cr2+, and T = Fe3+, and Ga3+). The samples were prepared by the conventional ball milling technique and sintering at 1200° C. The effect of the choices of Me and T ions on the structural and magnetic properties of the hexaferrites were investigated. XRD patterns, magnetic parameters, and Mössbauer spectra of the Co2Y were consistent with a single phase Y-type hexaferrite. However, the CoCr-Y sample was found to be dominated by the Y-type hexaferrite, and M-type and BaCrO4 minority phases were observed in the XRD pattern of the sample. The small increase in saturation magnetization from about 34 emu/g up to 37.5 emu/g was therefore attributed to the development of the M-type phase. On the other hand, XRD pattern of the Cr2Y sample indicated the dominance of the M-type phase in this sample. The high coercivity (1445 Oe) of this sample is evidence of the transformation of the material from a typically soft magnetic material (Y-type) to a hard magnet (M-type). The Ga-substitution for Fe in Co2Y did not affect the saturation magnetization significantly, but the coercivity was reduced. However, the sample Ba2CoMgFe11GaO22 exhibited a significant reduction of the saturation magnetization down to a value 26.6 emu/g, which could be due to the attenuation of the super-exchange interactions induced by the Mg2+ substitution.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 241)

Pages:

93-125

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties, Journal of Materials Science: Materials in Electronics 20 (9) (2009) 789-834.

DOI: 10.1007/s10854-009-9923-2

Google Scholar

[2] Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 2: passive components and electrical tuning, Journal of Materials Science: Materials in Electronics 20 (10) (2009) 911-952.

DOI: 10.1007/s10854-009-9924-1

Google Scholar

[3] J. Nicolas, Microwave ferrites, in: E.P. Wohlfarth (Ed. ) Ferromagnetic Materials, Vol. 2, North-Holland Publishing Company, New York, 1980, pp.243-296.

Google Scholar

[4] Y. Bai, W. Zhang, L. Qiao, J. Zhou, Low-fired Y-type hexagonal ferrite for hyper frequency applications, Journal of Advanced Ceramics 1 (2) (2012) 100-109.

DOI: 10.1007/s40145-012-0015-z

Google Scholar

[5] X. Zuo, P. Shi, S. Oliver, C. Vittoria, Single crystal hexaferrite phase shifter at Ka band, Journal of applied physics 91 (10) (2002) 7622-7624.

DOI: 10.1063/1.1450845

Google Scholar

[6] S. Yoon, C. Vittoria, Microwave and magnetic properties of barium hexaferrite films having the c-axis in the film plane by liquid phase epitaxy technique, Journal of applied physics 93 (10) (2003) 8597-8599.

DOI: 10.1063/1.1557791

Google Scholar

[7] V.G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K. Ziemer, N.X. Sun, Ba-hexaferrite films for next generation microwave devices, Journal of Applied Physics 99 (8) (2006) 08M911.

DOI: 10.1063/1.2165145

Google Scholar

[8] F. Pereira, M. Santos, R. Sohn, J. Almeida, A. Medeiros, M. Costa, A. Sombra, Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1−xFe12O19) in the RF and microwave (MW) frequency range, Journal of Materials Science: Materials in Electronics 20 (5) (2009).

DOI: 10.1007/s10854-008-9744-8

Google Scholar

[9] J. Smit, H.P.J. Wijn, Ferrites, Wiley, New York, 1959; Philips Technische Bibliothek, Eindhoven, (1962).

Google Scholar

[10] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science 57 (7) (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[11] Y. Bai, J. Zhou, Z. Gui, Z. Yue, L. Li, Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components, Journal of magnetism and magnetic materials 264 (1) (2003) 44-49.

DOI: 10.1016/s0304-8853(03)00134-3

Google Scholar

[12] B. Ul-ain, Y. Huang, A. Wang, S. Ahmed, T. Zhang, Microwave-assisted catalytic decomposition of N2O over hexaferrites, Catalysis Communications 16 (1) (2011) 103-107.

DOI: 10.1016/j.catcom.2011.09.019

Google Scholar

[13] G. Litsardakis, I. Manolakis, C. Serletis, K. Efthimiadis, High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation, Journal of Applied Physics 103 (7) (2008) 07E501.

DOI: 10.1063/1.2832857

Google Scholar

[14] Y. Hongya, L. Zhengyi, Z. Dechang, Microstructure of pre-sintered permanent magnetic strontium ferrite powder, Rare Metals 25 (6) (2006) 572-577.

DOI: 10.1016/s1001-0521(07)60148-x

Google Scholar

[15] S.M. Aliev, I. Kamilov, M. Guseynov, M.S. Aliev, V. Mamedov, S.M. Ismailov, Study of the magnetic properties of the permanent magnets by Mössbauer spectroscopy, Journal of Magnetism and Magnetic Materials 321 (2) (2009) 74-76.

DOI: 10.1016/j.jmmm.2008.07.030

Google Scholar

[16] G. Bate, Magnetic recording materials since 1975, Journal of Magnetism and Magnetic materials 100 (1) (1991) 413-424.

DOI: 10.1016/0304-8853(91)90831-t

Google Scholar

[17] X. Sui, M. Scherge, M.H. Kryder, J.E. Snyder, V.G. Harris, N.C. Koon, Barium ferrite thin-film recording media, Journal of magnetism and magnetic materials 155 (1) (1996) 132-139.

DOI: 10.1016/0304-8853(95)00722-9

Google Scholar

[18] G. Mendoza-Suarez, L. Rivas-Vazquez, J. Corral-Huacuz, A. Fuentes, J. Escalante-Garcı́, Magnetic properties and microstructure of BaFe11. 6−2xTixMxO19 (M= Co, Zn, Sn) compounds, Physica B: Condensed Matter 339 (2) (2003) 110-118.

DOI: 10.1016/j.physb.2003.08.120

Google Scholar

[19] G. Litsardakis, A. Stergiou, J. Georgiou, S. Sklavounos, D. Samaras, M. Pernet, P. Germi, Non-stoichiometric barium ferrite particles for high-density magnetic recording, Journal of magnetism and magnetic materials 120 (1) (1993) 58-60.

DOI: 10.1016/0304-8853(93)91286-g

Google Scholar

[20] M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, A.M. Qureshi, Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices, Journal of magnetism and magnetic materials 324 (1) (2012).

DOI: 10.1016/j.jmmm.2011.07.016

Google Scholar

[21] M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites, Journal of Alloys and Compounds 617 (2014) 437-443.

DOI: 10.1016/j.jallcom.2014.08.015

Google Scholar

[22] G. Bate, Recording materials, in: P. E, Wohlfarth (Ed. ) Ferromagnetic materials, Vol. 2, North-Holland Publishing Company, New York, 1980, pp.381-508.

Google Scholar

[23] R. Meena, S. Bhattachrya, R. Chatterjee, Complex permittivity, permeability and microwave absorbing properties of (Mn2−xZnx) U-type hexaferrite, Journal of Magnetism and Magnetic Materials 322 (19) (2010) 2908-2914.

DOI: 10.1016/j.jmmm.2010.05.004

Google Scholar

[24] R. Aiyar, Microwave absorbers based on hexaferrites, Microwave and Optical Technology Letters 23 (5) (1999) 321-323.

DOI: 10.1002/(sici)1098-2760(19991205)23:5<321::aid-mop18>3.0.co;2-k

Google Scholar

[25] Y. Yang, B. Zhang, W. Xu, Y. Shi, N. Zhou, H. Lu, Microwave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical milling, Journal of magnetism and magnetic materials 265 (2) (2003) 119-122.

DOI: 10.1016/s0304-8853(03)00237-3

Google Scholar

[26] J. -J. Xu, C. -M. Yang, H. -F. Zou, Y. -H. Song, G. -M. Gao, B. -C. An, S. -C. Gan, Electromagnetic and microwave absorbing properties of Co 2 Z-type hexaferrites doped with La 3+, Journal of Magnetism and Magnetic Materials 321 (19) (2009).

DOI: 10.1016/j.jmmm.2009.05.039

Google Scholar

[27] R. Meena, S. Bhattachrya, R. Chatterjee, Complex permittivity, permeability and microwave absorbing studies of (Co2−xMnx) U-type hexaferrite for X-band (8. 2–12. 4 GHz) frequencies, Materials Science and Engineering: B 171 (1) (2010) 133-138.

DOI: 10.1016/j.mseb.2010.03.086

Google Scholar

[28] R. Meena, S. Bhattachrya, R. Chatterjee, Development of tuned microwave absorbers, using U-type hexaferrite, Materials & Design 31 (7) (2010) 3220-3226.

DOI: 10.1016/j.matdes.2010.02.019

Google Scholar

[29] D. Lisjak, V.B. Bregar, A. Znidarsic, M. Drofenik, Microwave behaviour of ferrite composites, Journal of Optoelectronics and Advanced Materials 8 (1) (2006) 60-65.

Google Scholar

[30] A. Aslam, M. Islam, I. Ali, M. Awan, M. Irfan, A. Iftikhar, High frequency electrical transport properties of CoFe2O4 and Sr2NiMnFe12O22 composite ferrites, Ceramics International 40 (1) (2014) 155-162.

DOI: 10.1016/j.ceramint.2013.05.116

Google Scholar

[31] S. Choopani, N. Keyhan, A. Ghasemi, A. Sharbati, R.S. Alam, Structural, magnetic and microwave absorption characteristics of BaCoxMnxTi2xFe12−4xO19, Materials Chemistry and Physics 113 (2) (2009) 717-720.

DOI: 10.1016/j.matchemphys.2008.07.130

Google Scholar

[32] T. Kagotani, D. Fujiwara, S. Sugimoto, K. Inomata, M. Homma, Enhancement of GHz electromagnetic wave absorption characteristics in aligned M-type barium ferrite Ba1−xLaxZnxFe12−x−y(Me0. 5Mn0. 5)yO19 (x = 0. 0–0. 5; y = 1. 0–3. 0, Me: Zr, Sn) by metal substitution, Journal of Magnetism and Magnetic Materials 272 (2004).

DOI: 10.1016/j.jmmm.2003.12.878

Google Scholar

[33] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials 321 (14) (2009) 2035-(2047).

DOI: 10.1016/j.jmmm.2009.01.004

Google Scholar

[34] S. Bae, Y. -K. Hong, J. -J. Lee, J. -H. Park, J. Jalli, G. Abo, H.M. Kwon, C.K. Jayasooriya, Miniature and higher-order mode ferrite MIMO ring patch antenna for mobile communication system, Progress In Electromagnetics Research B 25 (2010) 53-74.

DOI: 10.2528/pierb10071910

Google Scholar

[35] Y. Bai, J. Zhou, Z. Gui, L. Li, L. Qiao, The physic properties of Bi–Zn codoped Y-type hexagonal ferrite, Journal of Alloys and Compounds 450 (1) (2008) 412-416.

DOI: 10.1016/j.jallcom.2006.10.122

Google Scholar

[36] M.A. Tsankov, L.G. Milenova, Design of self‐biased hexaferrite waveguide circulators, Journal of applied physics 73 (10) (1993) 7018-7020.

DOI: 10.1063/1.352416

Google Scholar

[37] T. Kimura, Magnetoelectric hexaferrites, Annu. Rev. Condens. Matter Phys. 3 (1) (2012) 93-110.

DOI: 10.1146/annurev-conmatphys-020911-125101

Google Scholar

[38] X. Zhang, Y. Zhao, Y. Cui, L. Ye, J. Wang, S. Zhang, H. Zhang, M. Zhu, Magnetodielectric effect in Z-type hexaferrite, Applied Physics Letters 100 (3) (2012) 032901.

DOI: 10.1063/1.3677672

Google Scholar

[39] K. Ebnabbasi, Y. Chen, A. Geiler, V. Harris, C. Vittoria, Magneto-electric effects on Sr Z-type hexaferrite at room temperature, Journal of Applied Physics 111 (7) (2012) 07C719.

DOI: 10.1063/1.3678588

Google Scholar

[40] L. Wang, D. Wang, Q. Cao, Y. Zheng, H. Xuan, J. Gao, Y. Du, Electric control of magnetism at room temperature, Scientific reports 2 (2012) 223.

DOI: 10.1038/srep00223

Google Scholar

[41] K. Knížek, P. Novák, M. Küpferling, Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations, Physical Review B 73 (15) (2006) 153103.

DOI: 10.1103/physrevb.73.153103

Google Scholar

[42] P. Novák, K. Knížek, J. Rusz, Magnetism in the magnetoelectric hexaferrite system (Ba1−xSrx)2Zn2Fe12O22, Physical Review B 76 (2) (2007) 024432.

Google Scholar

[43] N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shimano, K. Iwasa, T. Arima, Y. Tokura, Electric-dipole-active magnetic resonance in the conical-spin magnet Ba2Mg2Fe12O22, Physical Review B 80 (22) (2009) 220406.

DOI: 10.1103/physrevb.80.220406

Google Scholar

[44] H. Sagayama, K. Taniguchi, N. Abe, T. -h. Arima, Y. Nishikawa, S. -i. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, K. Hirota, Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22, Physical Review B 80 (18) (2009).

DOI: 10.1103/physrevb.80.180419

Google Scholar

[45] A.M. Mulders, S.M. Lawrence, A.J. Princep, U. Staub, Y. Bodenthin, M. Garcia-Fernandez, M. Garganourakis, J. Hester, R. Macquart, C. Ling, Circularly polarized soft x-ray diffraction study of helical magnetism in hexaferrite, Physical Review B 81 (9) (2010).

DOI: 10.1103/physrevb.81.092405

Google Scholar

[46] H.B. Lee, S.H. Chun, K.W. Shin, B. -G. Jeon, Y.S. Chai, K.H. Kim, J. Schefer, H. Chang, S. -N. Yun, T. -Y. Joung, Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0. 3Sr1. 7Co2Fe12O22, Physical Review B 86 (9) (2012).

Google Scholar

[47] S.H. Chun, Y.S. Chai, Y.S. Oh, D. Jaiswal-Nagar, S.Y. Haam, I. Kim, B. Lee, D.H. Nam, K. -T. Ko, J. -H. Park, Realization of giant magnetoelectricity in helimagnets, Physical review letters 104 (3) (2010) 037204.

DOI: 10.1103/physrevlett.104.049901

Google Scholar

[48] H. Khanduri, M.C. Dimri, H. Kooskora, I. Heinmaa, G. Viola, H. Ning, M. Reece, J. Krustok, R. Stern, Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites, Journal of Applied Physics 112 (7) (2012).

DOI: 10.1063/1.4754532

Google Scholar

[49] H. Chang, H.B. Lee, Y. -S. Song, J. -H. Chung, S. Kim, I. Oh, M. Reehuis, J. Schefer, Al doping effect on magnetic phase transitions of magnetoelectric hexaferrite Ba0. 7Sr1. 3Zn2(Fe1−xAlx)12O22, Physical Review B 85 (6) (2012) 064402.

Google Scholar

[50] T. Asaka, X. Yu, Y. Hiraoka, K. Kimoto, T. Hirayama, T. Kimura, Y. Matsui, Lattice modulation induced by magnetic order in the magnetoelectric helimagnet Ba0. 5Sr1. 5Zn2Fe12O22, Physical Review B 83 (13) (2011) 130401.

Google Scholar

[51] S. Shen, L. Yan, Y. Chai, J. Cong, Y. Sun, Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba1. 3Sr0. 7Co0. 9Zn1. 1Fe10. 8Al1. 2O22, Applied Physics Letters 104 (3) (2014) 032905.

DOI: 10.1063/1.4862690

Google Scholar

[52] S. Chikazumi, Physics of Ferromagnetism 2e, Oxford University Press, (2009).

Google Scholar

[53] W. Abbas, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.A. Khan, M.N. Akhtar, M. Ahmad, Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol–gel autocombustion for a variety of applications, Journal of Magnetism and Magnetic Materials 374 (2015).

DOI: 10.1016/j.jmmm.2014.08.029

Google Scholar

[54] S.H. Mahmood, F.S. Jaradat, A.F. Lehlooh, A. Hammoudeh, Structural properties and hyperfine interactions in Co-Zn Y-type hexaferrites prepared by sol-gel method, Ceramics International 40 (4) (2014) 5231-5236.

DOI: 10.1016/j.ceramint.2013.10.092

Google Scholar

[55] G. Packiaraj, N.R. Panchal, R.B. Jotania, Structural and Dielectric studies of Cu substituted Barium hexaferrite prepared by Sol-gel auto combustion technique, Solid State Phenomena 209 (2014) 102-106.

DOI: 10.4028/www.scientific.net/ssp.209.102

Google Scholar

[56] R.B. Jotania, P.A. Patel, Microstructure and Dielectric Properties of Mn Substituted Sr2Cu2Fe12O22 (Cu2Y) Hexaferrite Powder, International Journal of Engineering Research and Applications (IJERA) 2 (4) (2012) 494-498.

Google Scholar

[57] S.R. Janasi, D. Rodrigues, F.J. Landgraf, M. Emura, Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions, Magnetics, IEEE Transactions on 36 (5) (2000) 3327-3329.

DOI: 10.1109/20.908788

Google Scholar

[58] R.A. Nandotaria, R.B. Jotania, Formation and Structural Properties of Cobalt Doped Sr-Cu Magnetic Hexaferrite Particles, International Journal of Soft Computing and Engineering (IJSCE) 1 (2011) 45-48.

Google Scholar

[59] A. Ataie, I. Harris, C. Ponton, Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions, Journal of materials science 30 (6) (1995) 1429-1433.

DOI: 10.1007/bf00375243

Google Scholar

[60] D. Primc, D. Makovec, D. Lisjak, M. Drofenik, Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions, Nanotechnology 20 (31) (2009) 315605.

DOI: 10.1088/0957-4484/20/31/315605

Google Scholar

[61] G.H. Dushaq, S.H. Mahmood, I. Bsoul, H.K. Juwhari, B. Lahlouh, M.A. AlDamen, Effects of molybdenum concentration and valence state on the structural and magnetic properties of BaFe11. 6MoxZn0. 4-xO19 hexaferrites, Acta Metallurgica Sinica (English Letters) 26 (5) (2013).

DOI: 10.1007/s40195-013-0075-2

Google Scholar

[62] S.H. Mahmood, G.H. Dushaq, I. Bsoul, M. Awawdeh, H.K. Juwhari, B.I. Lahlouh, M.A. AlDamen, Magnetic Properties and Hyperfine Interactions in M-Type BaFe12-2xMoxZnxO19 Hexaferrites, Journal of Applied Mathematics and Physics 2 (05) (2014) 77-87.

DOI: 10.4236/jamp.2014.25011

Google Scholar

[63] S. Ketov, Y.D. Yagodkin, A. Lebed, Y.V. Chernopyatova, K. Khlopkov, Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing, Journal of Magnetism and Magnetic Materials 300 (1) (2006).

DOI: 10.1016/j.jmmm.2005.10.199

Google Scholar

[64] I. Bsoul, S. Mahmood, Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles, Journal of Alloys and Compounds 489 (1) (2010) 110-114.

DOI: 10.1016/j.jallcom.2009.09.024

Google Scholar

[65] S.H. Mahmood, I. Bsoul, Hopkinson peak and superparamagnetic effects in BaFe12-xGaxO19 nanoparticles, EPJ Web of Conferences 29 (2012) 00039.

DOI: 10.1051/epjconf/20122900039

Google Scholar

[66] I. Bsoul, S.H. Mahmood, A.F. Lehlooh, Structural and magnetic properties of BaFe12-2xTixRuxO19, Journal of Alloys and Compounds 498 (2) (2010) 157-161.

DOI: 10.1016/j.jallcom.2010.03.142

Google Scholar

[67] A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, K. Prokeš, K. Siemensmeyer, B. Klemke, H. Nakotte, Magnetic study of M-type doped barium hexaferrite nanocrystalline particles, Journal of Applied Physics 114 (24) (2013) 243910.

DOI: 10.1063/1.4858383

Google Scholar

[68] S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, Effects of Heat Treatment on the Phase Evolution, Structural, and Magnetic Properties of Mo-Zn Doped M-type Hexaferrites, Solid State Phenomena 232 (2015) 65-92.

DOI: 10.4028/www.scientific.net/ssp.232.65

Google Scholar

[69] S. Mahmood, A. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, H. Juwhari, Structural and Magnetic Properties of Mo-Zn Substituted (BaFe12-4xMoxZn3xO19) M-Type Hexaferrites, Material Science Research India 11 (1) (2014) 09-20.

DOI: 10.13005/msri/110102

Google Scholar

[70] C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, F. Tabatabaei, Static magnetic properties of Co and Ru substituted Ba–Sr ferrite, Materials Research Bulletin 43 (1) (2008) 176-184.

DOI: 10.1016/j.materresbull.2007.06.050

Google Scholar

[71] I. Bsoul, S.H. Mahmood, A.F. Lehlooh, A. Al-Jamel, Structural and magnetic properties of SrFe12-2 xTixRuxO19, Journal of Alloys and Compounds 551 (2013) 490-495.

DOI: 10.1016/j.jallcom.2012.11.062

Google Scholar

[72] G. Albanese, B. Watts, F. Leccabue, S.D. a. Castañón, Mössbauer and magnetic studies of PbFe12− xCrxO19 hexagonal ferrites, Journal of magnetism and magnetic materials 184 (3) (1998) 337-343.

DOI: 10.1016/s0304-8853(97)01162-1

Google Scholar

[73] C. Venkateshwarlu, C. Ashok, B.A. Rao, D. Ravinder, B. Boyanov, Electrical conductivity of Co–Zr substituted hexagonal barium ferrites, Journal of alloys and compounds 426 (1) (2006) 1-3.

DOI: 10.1016/j.jallcom.2006.02.001

Google Scholar

[74] A. Guerrero-Serrano, T. Pérez-Juache, M. Mirabal-García, J. Matutes-Aquino, S. Palomares-Sánchez, Effect of barium on the properties of lead hexaferrite, Journal of superconductivity and novel magnetism 24 (8) (2011) 2307-2312.

DOI: 10.1007/s10948-011-1181-x

Google Scholar

[75] A.M. Blanco, C. Gonzalez, Magnetic properties and distribution of Ca ions in Ca-substituted Ba-ferrite, Journal of Physics D: Applied Physics 24 (4) (1991) 612-618.

DOI: 10.1088/0022-3727/24/4/013

Google Scholar

[76] M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method, Journal of Magnetism and Magnetic Materials 322 (13) (2010).

DOI: 10.1016/j.jmmm.2009.12.013

Google Scholar

[77] S.B. Narang, I. Hudiara, Microwave dielectric properties of M-type barium, calcium and strontium hexaferrite substituted with Co and Ti, Journal of Ceramic Processing Research 7 (2) (2006) 113-116.

Google Scholar

[78] Q. Chen, X. Wang, H. Ge, Magnetic properties of Aluminum-Substituted strontium hexaferrite prepared by citrate–nitrite sol–gel technique, International Journal of Modern Physics B 22 (20) (2008) 3413-3420.

DOI: 10.1142/s0217979208039915

Google Scholar

[79] H. Luo, B. Rai, S. Mishra, V. Nguyen, J. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route, Journal of Magnetism and Magnetic Materials 324 (17) (2012) 2602-2608.

DOI: 10.1016/j.jmmm.2012.02.106

Google Scholar

[80] M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites, Journal of Alloys and Compounds 585 (2014) 465-473.

DOI: 10.1016/j.jallcom.2013.09.174

Google Scholar

[81] I. Bsoul, S. Mahmood, Structural and magnetic properties of BaFe12-xAlxO19 prepared by milling and calcination, Jordan J. Phys. 2 (3) (2009) 171-179.

Google Scholar

[82] M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite, Journal of Magnetism and Magnetic Materials 320 (6) (2008).

DOI: 10.1016/j.jmmm.2007.09.005

Google Scholar

[83] D. Han, Z. Yang, H. Zeng, X. Zhou, A. Morrish, Cation site preference and magnetic properties of Co-Sn-substituted Ba ferrite particles, Journal of magnetism and magnetic materials 137 (1) (1994) 191-196.

DOI: 10.1016/0304-8853(94)90205-4

Google Scholar

[84] I. Bsoul, S. Mahmood, A. -F. Lehlooh, Structural and magnetic properties of BaFe12−2xTixRuxO19, Journal of Alloys and Compounds 498 (2) (2010) 157-161.

DOI: 10.1016/j.jallcom.2010.03.142

Google Scholar

[85] A. González-Angeles, G. Mendoza-Suárez, A. Grusková, J. Sláma, J. Lipka, M. Papánová, Magnetic structure of Sn2+Ru4+-substituted barium hexaferrites prepared by mechanical alloying, Materials letters 59 (14) (2005) 1815-1819.

DOI: 10.1016/j.matlet.2005.01.072

Google Scholar

[86] A. González-Angeles, G. Mendoza-Suarez, A. Grusková, M. Papanova, J. Slama, Magnetic studies of Zn–Ti-substituted barium hexaferrites prepared by mechanical milling, Materials letters 59 (1) (2005) 26-31.

DOI: 10.1016/j.matlet.2004.09.012

Google Scholar

[87] S. Nilpairach, W. Udomkichdaecha, I. Tang, Coercivity of the co-precipitated prepared hexaferrites, BaFe12-2xCoxSnxO19, Journal of the Korean Physical Society 48 (5) (2006) 939-945.

Google Scholar

[88] G. Albanese, Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods, Le Journal de Physique Colloques 38 (C1) (1977) C1-85-C81-94.

DOI: 10.1051/jphyscol:1977117

Google Scholar

[89] C. Sudakar, G. Subbanna, T. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties, Journal of magnetism and magnetic materials 263 (3) (2003) 253-268.

DOI: 10.1016/s0304-8853(02)01572-x

Google Scholar

[90] U. -A. Barkat, S. Ahmed, Y. HUANG, Catalytic decomposition of N2O on cobalt substituted barium hexaferrites, Chinese Journal of Catalysis 34 (7) (2013) 1357-1362.

DOI: 10.1016/s1872-2067(12)60587-7

Google Scholar

[91] S. Bierlich, J. Töpfer, Zn-and Cu-substituted Co2Y hexagonal ferrites: Sintering behavior and permeability, Journal of Magnetism and Magnetic Materials 324 (10) (2012) 1804-1808.

DOI: 10.1016/j.jmmm.2012.01.006

Google Scholar

[92] A. Deriu, F. Licci, S. Rinaldi, T. Besagni, Y-type hexagonal ferrites containing zinc, copper and cadmium: magnetic properties and cation distribution, Journal of Magnetism and Magnetic Materials 22 (3) (1981) 257-262.

DOI: 10.1016/0304-8853(81)90030-5

Google Scholar

[93] A. Elahi, M. Ahmad, I. Ali, M. Rana, Preparation and properties of sol–gel synthesized Mg-substituted Ni2Y hexagonal ferrites, Ceramics International 39 (2) (2013) 983-990.

DOI: 10.1016/j.ceramint.2012.07.016

Google Scholar

[94] P. Moharkar, S. Gawali, K. Rewatkar, S. Sable, V. Nanoti, Influence of cobalt ions substitution on microstructure, magnetic and acoustic properties of nanocrystalline calcium hexaferrites, International Journal of Knowledge Engineering 3 (1) (2012).

Google Scholar

[95] G. Pires, H. Rodrigues, J. Almeida, E. Sancho, J. Góes, M. Costa, J. Denardin, A. Sombra, Study of the dielectric and magnetic properties of Co2Y, Y-type hexaferrite (Ba2Co2Fe12O22) added with PbO and Bi2O3 in the RF frequency range, Journal of Alloys and Compounds 493 (1) (2010).

DOI: 10.1016/j.jallcom.2009.12.094

Google Scholar

[96] M.J. Iqbal, Synthesis and study of physical properties of Zr4+–Co2+ co-doped barium hexagonal ferrites, Materials Science and Engineering: B 164 (1) (2009) 6-11.

DOI: 10.1016/j.mseb.2009.05.020

Google Scholar

[97] Y. Bai, F. Xu, L. Qiao, J. Zhou, Effect of Mn doping on physical properties of Y-type hexagonal ferrite, Journal of Alloys and Compounds 473 (1) (2009) 505-508.

DOI: 10.1016/j.jallcom.2008.06.011

Google Scholar

[98] P. Novák, V. Chlan, K. Knížek, Giant Magnetoelectricity in Aluminium Substituted Y-Hexaferrites, Acta Physica Polonica-Series A General Physics 118 (5) (2010) 723-724.

DOI: 10.12693/aphyspola.118.723

Google Scholar

[99] M.J. Iqbal, F. Liaqat, Physical and Electrical Properties of Nanosized Mn‐and Cr‐Doped Strontium Y‐Type Hexagonal Ferrites, Journal of the American Ceramic Society 93 (2) (2010) 474-480.

DOI: 10.1111/j.1551-2916.2009.03385.x

Google Scholar

[100] J. Jalli, Y. -K. Hong, S. Bae, J. -J. Lee, G.S. Abo, J. -H. Park, B. -C. Choi, T. Mewes, S. -G. Kim, S. -H. Gee, Magnetic and microwave properties of ferrimagnetic Zr-substituted Ba2Zn2Fe12O22 (Zn-Y) single crystals, Journal of Applied Physics 109 (7) (2011).

DOI: 10.1063/1.3560885

Google Scholar

[101] H. -I. Hsiang, L. -T. Mei, C. -S. Hsi, W. -C. Wu, J. -H. Wu, F. -S. Yen, Sintering behaviors, magnetic and electric properties of Bi–Zn co-doped Co2Y ferrites, Journal of Alloys and Compounds 509 (23) (2011) 6659-6665.

DOI: 10.1016/j.jallcom.2011.03.133

Google Scholar

[102] M. Salunkhe, D. Choudhary, S. Kondawar, Effect of the trivalent substitution on structural, magnetic and electrical properties of SR-Y type hexaferrite, Der Pharma Chemica 5 (2) (2013) 175-180.

Google Scholar

[103] I. Ali, M. Islam, M.N. Ashiq, H.M. Khan, M.A. Iqbal, M. Najam-Ul-Haq, Effect of Eu–Ni substitution on electrical and dielectric properties of Co–Sr–Y-type hexagonal ferrite, Materials Research Bulletin 49 (2014) 338-344.

DOI: 10.1016/j.materresbull.2013.09.012

Google Scholar

[104] A. Daigle, E. DuPre, A. Geiler, Y. Chen, P.V. Parimi, C. Vittoria, V.G. Harris, Preparation and Characterization of Pure‐Phase Co2Y Ferrite Powders via a Scalable Aqueous Coprecipitation Method, Journal of the American Ceramic Society 93 (10) (2010).

DOI: 10.1111/j.1551-2916.2010.03958.x

Google Scholar

[105] S.C. Mazumdar, A.A. Hossain, Synthesis and Magnetic Properties of Ba2Ni2–xZnxFe12O22, World Journal of Condensed Matter Physics 2 (2012) 181-187.

Google Scholar

[106] T. Koutzarova, S. Kolev, I. Nedkov, K. Krezhov, D. Kovacheva, B. Blagoev, C. Ghelev, C. Henrist, R. Cloots, A. Zaleski, Magnetic Properties of Nanosized Ba2Mg2Fe12O22 Powders Obtained by Auto-combustion, Journal of superconductivity and novel magnetism 25 (8) (2012).

DOI: 10.1007/s10948-011-1232-3

Google Scholar

[107] D.P. Dickson, F.J. Berry, Mössbauer spectroscopy, Cambridge University Press, (2005).

Google Scholar

[108] I. Omari, A.S. Saleh, S.H. Mahmood, Mössbauer studies of the ternary substitutional alloys FeAl1-xVx, FeAl1-xMnx, Journal of Magnetism and Magnetic Materials 78 (2) (1989) 183-189.

DOI: 10.1016/0304-8853(89)90265-5

Google Scholar

[109] S.H. Mahmood, A.S. Saleh, Mössbauer study of the alloy system FeAl1-xCox, Journal of Magnetism and Magnetic Materials 82 (1) (1989) 63-66.

DOI: 10.1016/0304-8853(89)90063-2

Google Scholar

[110] J. Shobaki, I.A. Al-Omari, M.K. Hasan, K.A. Azez, B.A. Albiss, H.H. Hamdeh, S.H. Mahmood, Mössbauer and structural studies of Fe0. 7-xVxAl0. 3 alloys, Journal of Magnetism and Magnetic Materials 213 (1-2) (2000) 51-55.

DOI: 10.1016/s0304-8853(99)00621-6

Google Scholar

[111] A.F. Lehlooh, S.M. Fayyad, S.H. Mahmood, Mössbauer spectroscopy study of Fe-Si solid solution prepared by mechanical milling, Hyperfine Interactions 139-140 (1-4) (2002) 335-344.

DOI: 10.1007/978-94-010-0299-8_35

Google Scholar

[112] A.F.D. Lehlooh, S.H. Mahmood, Mössbauer spectroscopy study of iron nickel alloys, Hyperfine Interactions 139-140 (1-4) (2002) 387-392.

DOI: 10.1007/978-94-010-0299-8_41

Google Scholar

[113] G.A. Al-Nawashi, S.H. Mahmood, A.F.D. Lehlooh, A.S. Saleh, Mössbauer spectroscopic study of order-disorder phenomena in Fe3-xMnxSi, Physica B: Condensed Matter 321 (1-4) (2002) 167-172.

DOI: 10.1016/s0921-4526(02)00845-1

Google Scholar

[114] A.F.D. Lehlooh, S.H. Mahmood, K.H.J. Buschow, Mössbauer spectroscopy study of GdFe6-xCoxGe6 alloy, Physica B: Condensed Matter 321 (1-4) (2002) 163-166.

DOI: 10.1016/s0921-4526(02)00844-x

Google Scholar

[115] J. Shobaki, I.A. Al-Omari, M.K. Hasan, K.A. Azez, S.H. Mahmood, D.J. Sellmyer, Magnetic, X-ray diffraction, and Mössbauer spectroscopy studies of Nd2Fe15Ga2Cx magnets, Physica B: Condensed Matter 321 (1-4) (2002) 173-177.

DOI: 10.1016/s0921-4526(02)00846-3

Google Scholar

[116] S. Nasir, A.F. Lahlooh, S. Mahmood, I.A. Al-Jarayesh, Ferric iron in upper mantle Cr-spinels: a Mossbauer spectroscopic study, Chemie der Erde - Geochemistry 53 (4) (1993) 369-375.

Google Scholar

[117] S. Nasir, I. Abu-Aljarayesh, S. Mahmood, A.F. Lehlooh, Oxidation state of the upper mantle beneath the northwestern part of the Arabian lithosphere, Tectonophysics 213 (3-4) (1992) 359-366.

DOI: 10.1016/0040-1951(92)90464-h

Google Scholar

[118] M.S. Lataifeh, S. Mahmood, M.F. Thomas, Mössbauer spectroscopy study of substituted rare-earth iron garnets at low temperature, Physica B: Condensed Matter 321 (1-4) (2002) 143-148.

DOI: 10.1016/s0921-4526(02)00840-2

Google Scholar

[119] M.S. Lataifeh, A.D. Lehlooh, S. Mahmood, Mössbauer spectroscopy of Al substituted Fe in holmium iron garnet, Hyperfine Interactions 122 (3-4) (1999) 253-258.

DOI: 10.1023/a:1012630730577

Google Scholar

[120] A.F. Lehlooh, S. Mahmood, M. Mozaffari, J. Amighian, Mössbauer spectroscopy study on the effect of Al-Cr Co-substitution in yttrium and yttrium-gadolinium iron garnets, Hyperfine Interactions 156-157 (1-4) (2004) 181-185.

DOI: 10.1023/b:hype.0000043224.54154.06

Google Scholar

[121] Z.A. Motlagh, M. Mozaffari, J. Amighian, A.F. Lehlooh, M. Awawdeh, S. Mahmood, Mössbauer studies of Y3Fe5-xAlxO12 nanopowders prepared by mechanochemical method, Hyperfine Interactions 198 (1) (2010) 295-302.

DOI: 10.1007/s10751-010-0234-z

Google Scholar

[122] A.F. Lehlooh, S.H. Mahmood, Mössbauer spectroscopy of Fe3O4 ultrafine particles, Journal of Magnetism and Magnetic Materials 151 (1-2) (1995) 163-166.

DOI: 10.1016/0304-8853(95)00385-1

Google Scholar

[123] W. Chérif, M. Ellouze, A.F. Lehlooh, S.H. Mahmood, F. Elhalouani, Structure, magnetic properties and Mössbauer spectra of La0. 67Sr0. 33FexMn1-xO3 manganites oxide prepared by mechanical ball milling method, Hyperfine Interactions 211 (1-3) (2012).

DOI: 10.1007/s10751-012-0604-9

Google Scholar

[124] S. Nakamura, Y. Tsunoda, A. Fuwa, Mössbauer study on Y-type hexaferrite Ba2Mg2Fe12O22, in: ICAME 2011, Springer, 2013, pp.629-632.

DOI: 10.1007/978-94-007-4762-3_108

Google Scholar

[125] S.H. Mahmood, J. Dawood, A.F. Lehlooh, A. Cheikhrouhou, A. Ammar, Polaronic and charge ordering effects in Pr0. 5Sr0. 5Mn1-xFexO3, Hyperfine Interactions 196 (1-3) (2010) 385-394.

DOI: 10.1007/s10751-010-0174-7

Google Scholar

[126] M. Costa, G.P. Júnior, A. Sombra, Dielectric and impedance properties' studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y), Materials Chemistry and Physics 123 (1) (2010) 35-39.

DOI: 10.1016/j.matchemphys.2010.03.026

Google Scholar

[127] T. Tsutaoka, N. Koga, Magnetic phase transitions in substituted barium ferrites BaFe12− x(Ti0. 5Co0. 5)xO19 (x = 0–5), Journal of Magnetism and Magnetic Materials 325 (2013) 36-41.

DOI: 10.1016/j.jmmm.2012.07.050

Google Scholar