[1]
W. P. Mason, Physical Acoustics and the Properties of Solids, Van Nostrand, Princeton, New Jersey (1985).
Google Scholar
[2]
A. E. H. Love, Theory of Elasticity, Cambridge University Press, London and New York, (1934).
Google Scholar
[3]
H. Kolsky, Stress Waves in Solids, Clarendon Press, Oxford (1953).
Google Scholar
[4]
W. Prager, Introduction of Mechanics of Continua, Ginn and Co., Boston, Massachussetts (1961).
Google Scholar
[5]
A. Puškár, Internal friction of materials, Cambridge International Science Publishing, Cambridge, UK, (2001).
Google Scholar
[6]
J. Bhimasenachar, J. of Annamalai University, XXII (1962), 14.
Google Scholar
[7]
G.A. Alers, in: W.P. Mason (Ed. ), Physical Acoustics, Principles and Methods, Vol. III, Part B. Lattice Dynamics, New York, Academic Press (1965).
Google Scholar
[8]
W. Strauss, Physical Acoustics: Principles and Methods, Vol. 4, (Ed. ) W.P. Mason, Academic Press, New York (1966).
Google Scholar
[9]
R. Truel, C. Elbaum and B.B. Chick, Ultrasonic Methods in Solid State Physics, (Ed. ) W.P. Mason, Academic Press, New York (1969).
Google Scholar
[10]
W.P. Mason and R.N. Thurston (Ed. ), Physical Acoustics, Principles and Methods, VIII, Academic Press, New York (1971).
Google Scholar
[11]
F. Seitz and D. Turnbull (Ed. ), Solid State Physics, Advances in Research and Applications, Vol. 7 (1958), Academic Press, New York (1958).
Google Scholar
[12]
M. E. Fine and N. T. Kenny, Moduli and Internal Friction of Magnetite as affected by the Low-Temperature Transformation, Phys. Rev. 94 (1954) 1573-1576.
DOI: 10.1103/physrev.94.1573
Google Scholar
[13]
M. E. Fine and N. T. Kenny, Low-Temperature Acoustic Relaxation in Ni-Fe Ferrites, Phys. Rev. 96 (1954) 1487-1488.
DOI: 10.1103/physrev.96.1487
Google Scholar
[14]
D. F. Gibbons, Acoustic Relaxations in Ferrite Single Crystals, J. Appl. Phys. 28 (1957) 810-814.
DOI: 10.1063/1.1722861
Google Scholar
[15]
S. Ramana Murthy and T. Seshagiri Rao, Elastic Behavior and Internal Friction of Polycrystalline Ferrites, J. Acoust. Soc. India 11 (1983) 36-50.
Google Scholar
[16]
S. Ramana Murthy and T. Seshagiri Rao, Internal Friction in Cobalt-Zinc Ferrites, J. Mater. Sci. Lett. 2 (1983) 587-589.
DOI: 10.1007/bf00719867
Google Scholar
[17]
S. Ramana Murthy and T. Seshagiri Rao, Elastic Behaviour of Co-Zn Ferrites, Ind. J. Pure Appl. Phys. 18 (1980) 933.
Google Scholar
[18]
S. Ramana Murthy, Internal Friction in Ni-Zn Ferrites, Phys. Stat. Solidi (Germany) 81 (1984) K 137-K140.
DOI: 10.1002/pssa.2210810250
Google Scholar
[19]
S. Ramana Murthy and T. Seshagiri Rao, Effect of Magnetic Field and Temperature on the Elastic Behaviour of Cobalt-Zinc Ferrites, J. Less-Comm. Metals 65 (1979) 19-26.
DOI: 10.1016/0022-5088(79)90148-6
Google Scholar
[20]
R.C. Lecraw, R. L. Comsteck and W. P. Mason, (Ed. ) Physical Acoustics Principles and Methods, Vol III, Academic Press, New York (1965), p.181.
Google Scholar
[21]
Y. Kawai and T. Ogawa, ΔE-Effect of a Mn Ferrite Single Crystal at Temperatures between 150 and 300 K, Phys. Stat. Solidi (a) (Germany) 76 (1983) 375-381.
DOI: 10.1002/pssa.2210760145
Google Scholar
[22]
P. Venugopal Reddy, V. N. Mulay, K. Bhupal Reddy and Y.V. Ramana, A Study of Elastic Behaviour and Internal Friction of Aluminum Substituted Magnesium-Copper Ferrites, Solid. State. Comm. 67 (1988) 449-452.
DOI: 10.1016/0038-1098(88)91064-2
Google Scholar
[23]
N. Kumar, Y. Purushotham, P. Venugopal Reddy, Z. H. Zaidi and P. Kishan, Elastic Behaviour of Zn-Substituted LiMg and LiMgTi Ferrites, J. Magn. Magn. Mater. 192 (1999) 116-120.
DOI: 10.1016/s0304-8853(98)00349-7
Google Scholar
[24]
B. Komalamba, K.V. Siva Kumar and V.R.K. Murthy, Effect of Magnetic Field on the Temperature Variation of Internal Friction Loss of Mn-Zn Spinel Ferrites in the Manganese-Rich Region, Phys. Stat. Solidi. (a) 161 (1997) 53-58.
DOI: 10.1002/1521-396x(199705)161:1<53::aid-pssa53>3.0.co;2-j
Google Scholar
[25]
N. Ramamanohar Reddy, E. Rajagopal, K.V. Sivakumar, K. K. Patankar and V.R. K Murthy, Effect of Temperature on the Elastic and Anelastic Behavior of Magneto-Ferroelectric Composites Ba0. 8Pb0. 2TiO3 +Ni0. 93Co0. 02MnO. 05Fe1. 95O4-δ in the Ferroelectric Rich Region, J. of Electroceram. 11 (2003).
DOI: 10.1007/s12034-007-0059-9
Google Scholar
[26]
K. Praveena, K. Sadhana and S. R. Murthy, Elastic Behaviour and Internal Friction Studies on Nanocrystalline Mn–Zn Ferrite Films Prepared by the Method of Pulsed Laser Ablation, J. Alloys and Compounds 492 (2010) 245-250.
DOI: 10.1016/j.jallcom.2009.08.095
Google Scholar
[27]
B. N. Dole, Y. Purushotham, S.S. Shah and P.V. Reddy, Elastic Behavior of Pr Substituted Y-123 Superconducting Materials, Mod. Phys. Letts. B 20 (2006) 843-847.
DOI: 10.1142/s0217984906011086
Google Scholar
[28]
S. R. Murthy, Elastic Behaviour and Internal Friction Studies on Thin Films of NiZn Ferrites Prepared by Using the Pulsed Laser Ablation Method, Physica Status Solidi (a) 191 (2002) 519-529.
DOI: 10.1002/1521-396x(200206)191:2<519::aid-pssa519>3.0.co;2-9
Google Scholar
[29]
V. D. Reddy, D. Ravinder and P.V. Reddy, Elastic Behaviour of Li-Cd Mixed Ferrites, Physica Status Solidi (a) 127 (1991) 349-353.
DOI: 10.1002/pssa.2211270208
Google Scholar
[30]
M.K. Moinuddin and S. Ramana Murthy, Elastic Behaviour of Mn-Zn Ferrites, J. Alloys and Compounds 194 (1993) 105-107.
DOI: 10.1016/0925-8388(93)90653-5
Google Scholar
[31]
M. B. Reddy, V. D. Reddy and P.V. Reddy, Anomalous Elastic behaviour of Li-Ti Mixed Ferrites, Mod. Phys. Lett. -B 8 (1994) 959-964.
DOI: 10.1142/s0217984994000960
Google Scholar
[32]
B. Ramaiah and S.R. Murthy , Elastic behaviour of polycystalline MnZn ferrites, J Mater. Sci. Lett. 19 (2000) 703-706.
Google Scholar
[33]
M.C. Sekhar K. Padmavathi, J. G. Park, and P. V. Reddy, Elastic Behavior of YMnO3 and ErMnO3 Manganites, Mod. Phys. Lett. B 17 (2003) 1119-1125.
DOI: 10.1142/s0217984903006025
Google Scholar
[34]
D. Ravinder and T. Alivelumanga, Composition Dependence of Elastic Moduli of Mixed Manganese-Zinc Ferrites, Mater. Lett. 37 (1998) 51-56.
DOI: 10.1016/s0167-577x(98)00062-7
Google Scholar
[35]
D. Ravinder, K. Vijaya Kumar and B.S. Boyanov, Elastic Behaviour of Cu-Zn Ferrites, Mater. Letts. 40 ( 1999) 22-27.
DOI: 10.1016/s0167-577x(98)00126-8
Google Scholar
[36]
M. Venkata Ramana, N. Ramanohar Reddy, W.C. Lin, K.V. Sivakumar and B.S. Murthy, Phase Transitions of Ferroelectric Na0. 5Bi0. 5TiO3 by Dielectric and Internal friction Measurements, Adv. Mater. Lett. 6 (2015) 27-32.
DOI: 10.5185/amlett.2015.5620
Google Scholar
[37]
P.V. Reddy and M. Murakami, Elastic Behaviour of Some Melt-Powder-Melt-Growth Y Ba2Cu3O7-δ , Mod. Phys. Lett. B. 13 (1999) 261-270.
Google Scholar
[38]
Y. Purushotham, V.D. Reddy, M. B. Reddy, D. R. Sagar, Pran Kishan, N. Kumar and P.V. Reddy, Elastic behaviour of Ti Substituted Mg Ferrites, Mat. Res. Bull. 30 (1995) 1015-1022.
DOI: 10.1016/0025-5408(95)00049-6
Google Scholar
[39]
D. Ravinder and T. Alivelu Manga, Elastic Behavour of Ni-Cd Ferrites, Mater. Lett. 41 (1999) 254-260.
DOI: 10.1016/s0167-577x(99)00139-1
Google Scholar
[40]
S.R. Murthy, Elastic and Magnetic Properties of Nanosized NiZn Ferrites, Proc. of ICF 8, Kyoto, Japan (2000) 310.
Google Scholar
[41]
T. S. Ke, Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals, Phys. Rev. 71 (1947) 533-546.
DOI: 10.1103/physrev.71.533
Google Scholar
[42]
D. R. Mosher, An Improved Apparatus for Measuring Anelasticity in Metal Specimens, Rev. Sci. Instrum. 40 (1969) 820-821.
DOI: 10.1063/1.1684077
Google Scholar
[43]
P. A. Grand Chang and R. C. Fornerod, Apparatus for Measuring Internal Friction and Elastic Constant of Samples, J. Phys. E 3 (1970) 219-223.
DOI: 10.1088/0022-3735/3/3/313
Google Scholar
[44]
J. E. Harbottle, An Instrument for Studying Low Frequency Friction at Constant Amplitude in Irradiated Foils, J. Phys. E 3 (1970) 49-54.
DOI: 10.1088/0022-3735/3/1/311
Google Scholar
[45]
S. L. Quimby, On the Experimental Determination of the Viscosity of Vibrating Solids, Phys. Rev. 25 (1925) 558-573.
DOI: 10.1103/physrev.25.558
Google Scholar
[46]
L. Balamuth, A New Method for Measuring Elastic Moduli and the Variation with Temperature of the Principal Young's Modulus of Rocksalt Between 78°K and 273°K, Phys. Rev. 45 (1934) 715-720.
DOI: 10.1103/physrev.45.715
Google Scholar
[47]
F. C. Rose, The Variation of the Adiabatic Elastic Moduli of Rocksalt with Temperature between 80°K and 270°K, Phys. Rev. 49 (1936) 50-55.
DOI: 10.1103/physrev.49.50
Google Scholar
[48]
W. J. Cooke, The Variation of the Internal Friction and Elastic Constants with Magnetization in Iron, Phys. Rev. 50 (1936) 1158-1164.
DOI: 10.1103/physrev.50.1158
Google Scholar
[49]
J. Marx, Use of the Piezoelectric Gauge for Internal Friction Measurements, Rev. Sci. Instrum. 22 (1951) 503-509.
DOI: 10.1063/1.1745981
Google Scholar
[50]
J. Marx and J. M. Sivertsen, Temperature Dependence of the Elastic Moduli and Internal Friction of Silica and Glass, J. Appl. Phys. 24 (1953) 81-87.
DOI: 10.1063/1.1721138
Google Scholar
[51]
F. Povolo and R. Gibala, A Marx Three Component Oscillator for Internal Friction Measurements at Low and High Temperatures in High, Rev. Sci. Instrum. 40 (1969) 817-819.
DOI: 10.1063/1.1684076
Google Scholar
[52]
P. G. Bordoni, Metodo Elettroacustico per Ricerche Sperimentali Sulla Elasticità, Nuovo Cim. 4 (1947) 177.
DOI: 10.1007/bf02780771
Google Scholar
[53]
R. L. Wegel and H. Walther, Internal Dissipation in Solids for Small Cyclic Strains, Physics 6(4) (1935) 141-157.
DOI: 10.1063/1.1745306
Google Scholar
[54]
R. H. Randall, F. Rose and C. Zener, Intercrystalline Thermal Currents as a Source of Internal Friction, Phys. Rev. 56 (1939) 343-348.
DOI: 10.1103/physrev.56.343
Google Scholar
[55]
H. B. Hutington, Ultrasonic Measurements on Single Crystals, Phys. Rev. 72 (1947) 321-331.
Google Scholar
[56]
W. P. Mason and H. J. Mc Skimin, Attenuation and Scattering of High Frequency Sound Waves in Metals and Glasses, J. Acoust. Soc. Amer. 19 (1947) 446-447.
Google Scholar
[57]
W. Roth, Scattering of Ultrasonic Radiation in Polycrystalline Metals, J. Appl. Phys. 19 (1948) 901-909.
Google Scholar
[58]
R. L. Roderick and R. Truell, The Measurement of Ultrasonic Attenuation in Solids by the Pulse Technique and Some Results in Steel, J. Appl. Phys. 23 (1952) 267-279.
DOI: 10.1063/1.1702187
Google Scholar
[59]
R. B. Schwarz, Simple System Using One‐Crystal Composite Oscillator for Internal Friction and Modulus Measurements, Rev. Sci. Instrum. 48 (1977) 111-115.
DOI: 10.1063/1.1134988
Google Scholar
[60]
W. H. Robinson and A. Edger, The Piezoelectric Method of Determining Mechanical Damping at Frequencies of 30 to 200 kHz, IEEE Trans. Sonics and Ultrasonics SU-21 (1984) 98-105.
DOI: 10.1109/t-su.1974.29798
Google Scholar
[61]
T. A. Reed, The Internal Friction of Single Metal Crystals, Phys. Rev. 58 (1940) 371-380.
Google Scholar
[62]
N. Varalaxmi, N. Ramanohar Reddy, M. Venkata Ramana. E. Rajgopal, K.V. Sivakumar and V.R.K. Murthy, Stress Sensitivity of Inductance in NiMgCuZn Ferrites and Development Of a Stress Insensitive Ferrite Composition for Micro-inductors, J. Mater. Sci. Electron. 19 (2008).
DOI: 10.1007/s10854-007-9352-z
Google Scholar
[63]
W. Madhuri, M. P. Reddy, N. R. Reddy, K.V. Siva Kumar and V.R.K. Murthy, Comparison of Initial Permeability of MgCuZn Ferrites Sintered by both Conventional and Microwave Methods, J. Phys. D: Appl. Phys. 42 (2009) 165007.
DOI: 10.1088/0022-3727/42/16/165007
Google Scholar
[64]
M. Venkata Ramana, G. Sreenivasulu, N. Ramamanohar Reddy, K. V. Siva Kumar, B. S. Murty and V.R.K. Murthy, Internal Friction and Longitudinal Modulus Behaviour of Multiferroic PbZr0. 52Ti0. 48O3+Ni0. 93Co0. 02Mn0. 05Fe1. 95O4−δ Particulate Composites, J. Phys. D: Appl. Phys. 40 (2007).
DOI: 10.1088/0022-3727/40/23/049
Google Scholar
[65]
S.A. Gridnev, V.S. Postnikov, Ultra low-Frequency internal friction mechanisms in ferroelectronics, Ferroelectrics 29 (1980) 157-162.
DOI: 10.1080/00150198008008471
Google Scholar
[65]
E.M. Bourim, H. Tanaka, M. Gabbay and G. Fantozzi, Internal Friction and Dielectric Measurements in Lead Zirconate Titanate Ferroelectric Ceramics, Jap. J. Appl. Phys. 39 (2000) 5542-5547.
DOI: 10.1143/jjap.39.5542
Google Scholar
[66]
C.O. Arean, J.L.R. Blanco, J.M.R. Gonzalez and M.C.T. Fernandez., Structural Characterization of Polycrystalline Gallium Substituted Cobalt ferrites, Mater. Sci. Letts. 9 (1990) 229-230.
DOI: 10.1007/bf00727726
Google Scholar
[67]
M.U. Rana, X-ray Diffraction and Site Preference Analysis of Ni Substituted MgFe2O4 Ferrites, Pak. J. Appl. Sci. 2 (2002) 1110-1114.
DOI: 10.3923/jas.2002.1110.1114
Google Scholar
[68]
B.P. Ladgaonkar, P.N. Vasambaker and A.S. Vaingankar, Cation Distribution and Magnetization Study of Nd3+Substituted Zn-Mg Ferrites. Turk. J. Phys. 25 (2001) 129-135.
Google Scholar
[69]
D.N. Bhosale, N.D. Choudhari, S.R. Sawant and P.P. Bakare. J. Magn. Magn. Mater. 173 (1997) 51-58.
Google Scholar
[70]
K.J. Standley, Oxide Magnetic Materials, Oxford University Press, London (1962), p.53.
Google Scholar
[71]
N. Varalaxmi and K.V. Sivakumar, Elastic Behavior of NiMgCuZn Ferrites in order to Study the Phase Transitions, Ind. J. Appl. Res. 4 (2014) 537-549.
DOI: 10.15373/2249555x/august2014/142
Google Scholar