Influence of Ca-Doping on Structural, Magnetic and Dielectric Properties of Ba3Co2-xCaxFe24O41 Hexaferrite Powders

Article Preview

Abstract:

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41 powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 241)

Pages:

226-236

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.W. Li, Y.P. Wu, G.Q. Lin, Linfeng Chen, Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoxZn2-xFe24O41 composites, J. Magn. Magn. Mater. 310 (2007) 145-151.

DOI: 10.1016/j.jmmm.2006.08.003

Google Scholar

[2] Xiaohui Wang, Tianling Ren, Longtu Li, Zhilun Gui, Shuiyuan Su, Zhenxing Yue, Ji Zhou, Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrate precursor method, J. Magn. Magn. Mater. 234 (2001) 255-260.

DOI: 10.1016/s0304-8853(01)00376-6

Google Scholar

[3] J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven, (1956) 204.

Google Scholar

[4] Jijing Xu, Guijuan Ji, Haifeng Zou, Yuan Zhou, Shucai Gan, Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites, J. Alloys Compd. 509 (2011) 4290-4294.

DOI: 10.1016/j.jallcom.2011.01.027

Google Scholar

[5] X.H. Wang, L.T. Li, S.Y. Su, Z.L. Gui, Novel ferrimagnetic material for fabricating multilayer chip inductors -Low-temperature-sintered Ba3Co2-xZnxFe24O41 hexaferrites, J. Am. Ceram. Soc. 88 (2005) 478-480.

DOI: 10.1111/j.1551-2916.2005.00081.x

Google Scholar

[6] Zhang Haijun, Yao Xi, Zhang Liangying, The preparation and microwave properties of Ba3ZnZCo2−ZFe24O41 ferrite by citrate sol–gel process, Mater. Sci. Eng., B 84 (2001) 252-257.

DOI: 10.1016/s0921-5107(01)00629-8

Google Scholar

[7] P. Allegri, D. Autissier, T. Taffary, Microwave Behaviour in Z Type Polycristalline Hexaferrites, Key Eng. Mater. 132-136 (1997) 1424-1427.

DOI: 10.4028/www.scientific.net/kem.132-136.1424

Google Scholar

[8] T. Nakamura, Low Temperature Sintering of NI-Cu-Zn Ferrite and its Permeability Spectra, J. Magn. Magn. Mater. 168 (1997) 285-291.

Google Scholar

[9] J. H. Nam, H.H. Jung, The effect of Cu substitution on the electrical and magnetic properties of NiZn ferrites, IEEE Trans. Magn 31 (6) (1995) 3985-3987.

DOI: 10.1109/20.489838

Google Scholar

[10] M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method, Chem. Eng. J. 136 (2008) 383–389.

DOI: 10.1016/j.cej.2007.05.046

Google Scholar

[11] Lawrence Kumar, Pawan Kumar, Amarendra Narayan and Manoranjan Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite, Int. Nano Lett. 3: 8 (2013).

DOI: 10.1186/2228-5326-3-8

Google Scholar

[12] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Boston (1978) 95.

Google Scholar

[13] R.D. Waldron, Infrared Spectra of Ferrites, Phys. Rev. 99 (1955) 1727-1735.

DOI: 10.1103/physrev.99.1727

Google Scholar

[14] S.T. Hafner, Ordnung/Unordnung und Ultrarotabsorption IV. Die Absorption einiger Metalloxyde mit Spinellstruktur, Z. Kristallogr. 115 (5-6) (1961) 331-358.

DOI: 10.1524/zkri.1961.115.5-6.331

Google Scholar

[15] O.S. Josyula, J. Sobhanadri, The far-infrared spectra of some mixed cobalt zinc and magnesium zinc ferrites, Phys. Status Solidi A 65 (1981) 479-483.

DOI: 10.1002/pssa.2210650209

Google Scholar

[16] M.M. Rashad, H.M. El-Sayed, M. Rasly, M.I. Nasr, Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia, J. Magn. Magn. Mater. 324 (2012) 4019-4023.

DOI: 10.1016/j.jmmm.2012.07.010

Google Scholar

[17] M. Rasly, M.M. Rashad, Structural and magnetic properties of Sn–Zn doped BaCo2Z-type hexaferrite powders prepared by citrate precursor method, J. Magn. Magn. Mater. 337 (2013) 58–64.

DOI: 10.1016/j.jmmm.2013.02.038

Google Scholar

[18] K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, New york, Boston, Dordrecht, London, Moscow (2004) 75-83.

Google Scholar

[19] Muhammad Naeem Ashiq, Muhammad Fahad Ehsan, Muhammad Javed Iqbal, Muhammad Najam-ul-Haq, Role of Zr–Co substitution at iron site on structural, magnetic and electrical properties of Sr-hexaferrites nanomaterials synthesized by the sol–gel combustion method, J. Magn. Magn. Mater. 332 (2013).

DOI: 10.1016/j.jmmm.2012.11.052

Google Scholar

[20] C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties, J. Magn. Magn. Mater. 263 (2003) 253–268.

DOI: 10.1016/s0304-8853(02)01572-x

Google Scholar

[21] Neha Solanki and R.B. Jotania, Dielectric properties of Z-type hexaferrite powder synthesized by a sol-gel autocombution method, Bionano Frontier 6 (4) (2014) 66-68.

Google Scholar

[22] K.W. Wagner, Zur theorie der unvoll Kommener dielektrika, Ann. Phys. 40 (1913) 817–855.

DOI: 10.1002/andp.19133450502

Google Scholar

[23] Jijing Xu, Guijuan Ji, Haifeng Zou, Yanhua Song, Shucai Gan, Influence of Sm-substitution on structure and electromagnetic properties of Ba3-xSmxCo2Fe24O41 powders, J. Magn. Magn. Mater. 323 (2010) 157–162.

DOI: 10.1016/j.jmmm.2010.08.055

Google Scholar

[24] C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1951) 121-124.

DOI: 10.1103/physrev.83.121

Google Scholar

[25] V. R. K. Murthy and J. Sobhanadri, Dielectric properties of some nickel-zinc ferrites at radio frequency, Phys. Stat. Sol. A 36 (1976) K133-K135.

DOI: 10.1002/pssa.2210360247

Google Scholar

[26] Mohd. Hashim, Alimuddin, Shalendra Kumar, Sagar E. Shirsath, R.K. Kotnala, Jyoti Shah, Ravi Kumar, Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite, Ceram. Int. 39 (2013) 1807–1819.

DOI: 10.1016/j.ceramint.2012.08.028

Google Scholar

[27] M.A. El Hitti, Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg ferrites, J. Magn. Magn. Mater. 164 (1996) 187.

DOI: 10.1016/s0304-8853(96)00368-x

Google Scholar

[28] A. M. Bhavikatti, Subhash Kulkarni, Arunkumar Lagashetty, Characterization and electromagnetic studies of nano-sized barium ferrite, Int. J. Engg. Sci. & Tech. 2(11) ( 2010) 6532-6539.

Google Scholar

[29] M. Penchal Reddy, W. Madhuri, G. Balakrishnaiah, N. R. Reddy, K.V.S. Kumar, V. R. K. Murthy, Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors, Curr. Appl. Phys. 11(2) (2010)191–198.

DOI: 10.1016/j.cap.2010.07.005

Google Scholar