[1]
Z.W. Li, Y.P. Wu, G.Q. Lin, Linfeng Chen, Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoxZn2-xFe24O41 composites, J. Magn. Magn. Mater. 310 (2007) 145-151.
DOI: 10.1016/j.jmmm.2006.08.003
Google Scholar
[2]
Xiaohui Wang, Tianling Ren, Longtu Li, Zhilun Gui, Shuiyuan Su, Zhenxing Yue, Ji Zhou, Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrate precursor method, J. Magn. Magn. Mater. 234 (2001) 255-260.
DOI: 10.1016/s0304-8853(01)00376-6
Google Scholar
[3]
J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven, (1956) 204.
Google Scholar
[4]
Jijing Xu, Guijuan Ji, Haifeng Zou, Yuan Zhou, Shucai Gan, Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites, J. Alloys Compd. 509 (2011) 4290-4294.
DOI: 10.1016/j.jallcom.2011.01.027
Google Scholar
[5]
X.H. Wang, L.T. Li, S.Y. Su, Z.L. Gui, Novel ferrimagnetic material for fabricating multilayer chip inductors -Low-temperature-sintered Ba3Co2-xZnxFe24O41 hexaferrites, J. Am. Ceram. Soc. 88 (2005) 478-480.
DOI: 10.1111/j.1551-2916.2005.00081.x
Google Scholar
[6]
Zhang Haijun, Yao Xi, Zhang Liangying, The preparation and microwave properties of Ba3ZnZCo2−ZFe24O41 ferrite by citrate sol–gel process, Mater. Sci. Eng., B 84 (2001) 252-257.
DOI: 10.1016/s0921-5107(01)00629-8
Google Scholar
[7]
P. Allegri, D. Autissier, T. Taffary, Microwave Behaviour in Z Type Polycristalline Hexaferrites, Key Eng. Mater. 132-136 (1997) 1424-1427.
DOI: 10.4028/www.scientific.net/kem.132-136.1424
Google Scholar
[8]
T. Nakamura, Low Temperature Sintering of NI-Cu-Zn Ferrite and its Permeability Spectra, J. Magn. Magn. Mater. 168 (1997) 285-291.
Google Scholar
[9]
J. H. Nam, H.H. Jung, The effect of Cu substitution on the electrical and magnetic properties of NiZn ferrites, IEEE Trans. Magn 31 (6) (1995) 3985-3987.
DOI: 10.1109/20.489838
Google Scholar
[10]
M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method, Chem. Eng. J. 136 (2008) 383–389.
DOI: 10.1016/j.cej.2007.05.046
Google Scholar
[11]
Lawrence Kumar, Pawan Kumar, Amarendra Narayan and Manoranjan Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite, Int. Nano Lett. 3: 8 (2013).
DOI: 10.1186/2228-5326-3-8
Google Scholar
[12]
B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Boston (1978) 95.
Google Scholar
[13]
R.D. Waldron, Infrared Spectra of Ferrites, Phys. Rev. 99 (1955) 1727-1735.
DOI: 10.1103/physrev.99.1727
Google Scholar
[14]
S.T. Hafner, Ordnung/Unordnung und Ultrarotabsorption IV. Die Absorption einiger Metalloxyde mit Spinellstruktur, Z. Kristallogr. 115 (5-6) (1961) 331-358.
DOI: 10.1524/zkri.1961.115.5-6.331
Google Scholar
[15]
O.S. Josyula, J. Sobhanadri, The far-infrared spectra of some mixed cobalt zinc and magnesium zinc ferrites, Phys. Status Solidi A 65 (1981) 479-483.
DOI: 10.1002/pssa.2210650209
Google Scholar
[16]
M.M. Rashad, H.M. El-Sayed, M. Rasly, M.I. Nasr, Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia, J. Magn. Magn. Mater. 324 (2012) 4019-4023.
DOI: 10.1016/j.jmmm.2012.07.010
Google Scholar
[17]
M. Rasly, M.M. Rashad, Structural and magnetic properties of Sn–Zn doped BaCo2Z-type hexaferrite powders prepared by citrate precursor method, J. Magn. Magn. Mater. 337 (2013) 58–64.
DOI: 10.1016/j.jmmm.2013.02.038
Google Scholar
[18]
K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, New york, Boston, Dordrecht, London, Moscow (2004) 75-83.
Google Scholar
[19]
Muhammad Naeem Ashiq, Muhammad Fahad Ehsan, Muhammad Javed Iqbal, Muhammad Najam-ul-Haq, Role of Zr–Co substitution at iron site on structural, magnetic and electrical properties of Sr-hexaferrites nanomaterials synthesized by the sol–gel combustion method, J. Magn. Magn. Mater. 332 (2013).
DOI: 10.1016/j.jmmm.2012.11.052
Google Scholar
[20]
C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties, J. Magn. Magn. Mater. 263 (2003) 253–268.
DOI: 10.1016/s0304-8853(02)01572-x
Google Scholar
[21]
Neha Solanki and R.B. Jotania, Dielectric properties of Z-type hexaferrite powder synthesized by a sol-gel autocombution method, Bionano Frontier 6 (4) (2014) 66-68.
Google Scholar
[22]
K.W. Wagner, Zur theorie der unvoll Kommener dielektrika, Ann. Phys. 40 (1913) 817–855.
DOI: 10.1002/andp.19133450502
Google Scholar
[23]
Jijing Xu, Guijuan Ji, Haifeng Zou, Yanhua Song, Shucai Gan, Influence of Sm-substitution on structure and electromagnetic properties of Ba3-xSmxCo2Fe24O41 powders, J. Magn. Magn. Mater. 323 (2010) 157–162.
DOI: 10.1016/j.jmmm.2010.08.055
Google Scholar
[24]
C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1951) 121-124.
DOI: 10.1103/physrev.83.121
Google Scholar
[25]
V. R. K. Murthy and J. Sobhanadri, Dielectric properties of some nickel-zinc ferrites at radio frequency, Phys. Stat. Sol. A 36 (1976) K133-K135.
DOI: 10.1002/pssa.2210360247
Google Scholar
[26]
Mohd. Hashim, Alimuddin, Shalendra Kumar, Sagar E. Shirsath, R.K. Kotnala, Jyoti Shah, Ravi Kumar, Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite, Ceram. Int. 39 (2013) 1807–1819.
DOI: 10.1016/j.ceramint.2012.08.028
Google Scholar
[27]
M.A. El Hitti, Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg ferrites, J. Magn. Magn. Mater. 164 (1996) 187.
DOI: 10.1016/s0304-8853(96)00368-x
Google Scholar
[28]
A. M. Bhavikatti, Subhash Kulkarni, Arunkumar Lagashetty, Characterization and electromagnetic studies of nano-sized barium ferrite, Int. J. Engg. Sci. & Tech. 2(11) ( 2010) 6532-6539.
Google Scholar
[29]
M. Penchal Reddy, W. Madhuri, G. Balakrishnaiah, N. R. Reddy, K.V.S. Kumar, V. R. K. Murthy, Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors, Curr. Appl. Phys. 11(2) (2010)191–198.
DOI: 10.1016/j.cap.2010.07.005
Google Scholar