Internal Gettering of Copper for Microelectronic Applications

Article Preview

Abstract:

The results of this work have shown that for microelectronic applications, gettering at dislocations is less important and oxygen precipitates are the main getter sink for Cu. Sufficient gettering of Cu in samples contaminated with low Cu concentration requires a higher density and larger oxygen precipitates compared to samples contaminated with high Cu concentration. It is demonstrated that the getter efficiency depends on the contamination level of the samples and getter test with low contamination level must be applied for microelectronic applications. Furthermore, a getter test for 3D chip stack technologies was developed. It was shown that although the wafers are thinned to a thickness of 50 μm their getter efficiency seems to be higher than for wafers of the original thickness. This is assumed to be due to the higher Cu concentration in the thinner wafers which can be gettered easier. It is also demonstrated that BMDs can getter Cu impurities even if the temperature does not exceed 300 °C. The getter efficiency tends to be higher if the samples are stored under day light and not in the dark.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

236-245

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Istratov, R. Sachdeva, C. Flink, S. Balasubramabian, E. R. Weber, Solid State Phenomena 82-84 (2002) 323.

Google Scholar

[2] J.E. Lawrence and H.R. Huff, Silicon Material Properties for VLSI Circuitry, in: VLSI Electronics: Microstructure Science Vol. 5, ed. by: N. G. Einspruch, (Academic Press, New York, 1982) pp.51-102.

DOI: 10.1016/b978-0-12-234105-2.50007-0

Google Scholar

[3] S. Takasu, VLSI Science and Technology / 1984, ed. by K. E. Bean and G. A. Rozgonyi, The Electrochemical Society, Proc. Vol. 84-7, 490 (1984).

Google Scholar

[4] H. Richter, Proc. 1st Int. Autumn School Gettering and Defect Engineering in the Semiconductor Technology (GADEST), Oct. 8-18, 1985, Garzau, GDR, p.1.

Google Scholar

[5] G. A. Rozgonyi, R. P. Deysher, and C. W. Pearce, J. Electrochem. Soc. 123 (1976) (1910).

Google Scholar

[6] T. Y. Tan, E. E. Gardner, and W. K. Tice, Appl. Phys. Lett. 30 (1977) 175.

Google Scholar

[7] G. A. Rozgonyi and C. W. Pearce, Appl. Phys. Lett. 32 (1978) 747.

Google Scholar

[8] Y. Hirano, K. Yamazaki, F. Inoue, K. Imaoka, K. Tanahashi, and H. Yamada-Kaneta, J. Electrochem. Soc. 154 (2007) H1027.

DOI: 10.1149/1.2792322

Google Scholar

[9] K. Izunome, Proceedings of the 6th Int. Symposium on Advanced Science and Technology of Silicon Materials (JSPS Symposium), Nov. 19-23, 2012, Kona, Hawaii, USA, pp.9-13.

Google Scholar

[10] K. Graff, Metal Impurities in Silicon-Device Fabrication in: Springer Ser. Mater. Sci. 24 (1995).

Google Scholar

[11] M. Seacrist, M. Stinson, J. Libbert, R. Standley, and J. Bins, in Semiconductor Silicon/2002, H. R. Huff, L. Fabry and S. Kishino, Editors, PV 2002-2, p.638, The Electrochemical Proceedings Series, Pennington, NJ (2002).

Google Scholar

[12] D. Kot, G. Kissinger, M. A. Schubert, A. Sattler, and T. Müller, Solid State Phenom. 205-206, (2014) 278.

Google Scholar

[13] E. R. Weber, Appl. Phys. A 30 (1983) 1.

Google Scholar

[14] M. B. Shabani, Y. Shiina, F. G. Kirscht, Y. Shimanuki, Mat. Sci. Eng. B 102 (2003) 238.

Google Scholar

[15] M. B. Shabani, T. Yoshimi, H. Abe, J. Electrochem. Soc. 143 (1996) (2025).

Google Scholar

[16] R. Hölzl, L. Fabry, K. -J. Range, R. Pech, Appl. Phys. A 74 (2002) 545.

Google Scholar

[17] R. Hölzl, K. J. Range, L. Fabry, Appl. Phys. A 75 (2002) 591.

Google Scholar

[18] L. Fabry, R. Hölzl, A. Anmdrukhiv, K. Matsumoto, J. Qiu, S. Koveshnikov, M. Goldstein, A. Grabau, H. Horie, R. Takeda, J. Electrochem. Soc. 153 (2006) G566.

DOI: 10.1149/1.2186799

Google Scholar

[19] M. B. Shabani, S. Okuuchi, T. Yoshimi, T. Shingyoji, F. G. Kirscht, Proc. High Purity Silicon V, ed. by: C. L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, H. J. Dawson, in: Electrochem. Soc. Proc. 98-13 (1998) 313.

Google Scholar

[20] K. -S. Kim, S. -W. Lee, H. -B. Kang, B. -Y. Lee, S. -M. Park, J. Electrochem. Soc. 155 (2008) H912.

Google Scholar

[21] A. A. Istratov, E. R. Weber, J. Electrochem. Soc. 149 (2002) G21.

Google Scholar

[22] J. H. An, J. S. Kim, J. Y. Kim, K. S. Lee, H. B. Kang, B. S. Moon, S. H. Lee, Y. Shin, S. M. Hwang and H. Y. Park, ECS Transactions, 50, 319 (2012).

Google Scholar

[23] D. Kot, G. Kissinger, A. Sattler, and T. Müller, Acta Physica Polonica A 125 (2014) 965.

Google Scholar

[24] K. Hozawa, S. Isomae, J. Yugami, Jpn. J. Appl. Phys. 41 (2002) 5887.

Google Scholar

[25] K. Hozawa, J. Yugami, Jpn. J. Appl. Phys. 43 (2004) 1.

Google Scholar

[26] S. -W. Lee, Y. -H. Kim, K. -S. Kim, B. -S. Hong, B. -Y. Lee, J. Korean Phys. Soc. 48 (6) (2006) 1548.

Google Scholar

[27] R. J. Falster, G. R. Fisher, and G. Ferrero, Appl. Phys. Lett., Vol. 59 (1991) 809.

Google Scholar

[28] D. Kot, G. Kissinger, W. Häckl, A. Sattler, W. von Ammon, ECS Transactions, Vol. 16(6) (2008) 207.

Google Scholar

[29] B. Shen, T. Sekiguchi, J. Jablonski, K. Sumino, J. Appl. Phys., Vol. 76 (1994) 4540.

Google Scholar

[30] E. R. Weber, Impurity Precipitation, Dissolution, Gettering, and Passivation in PV Silicon, Final Technical Report, February 2002, NREL/SR-520-31528.

DOI: 10.2172/15000243

Google Scholar

[31] K. Sueoka, S. Ohara, S. Shiba, S. Fukatani, ECS Transactions, Vol. 2 (2006) 261.

Google Scholar

[32] P. Bai, G. R. Yang, and T. M. Lu, J. Appl. Phys., Vol. 68 (1990) 3313.

Google Scholar

[33] M. Yonemura, K. Sueoka, K. Kamei, J. Appl. Phys., Vol. 88 (2000) 503.

Google Scholar

[34] S. Isomae, H. Ishida, T. Itoga, K. Hozawa, J. Electrochem. Soc., Vol. 194 (2002) G343.

DOI: 10.1149/1.1475694

Google Scholar

[35] F. Secco d'Aragona, J. Electrochem. Soc., Vol. 119 (1972) 948.

Google Scholar

[36] D. Kot, G. Kissinger, A. Sattler, W. von Ammon, ECS Transactions, Vol. 25(3) (2009) 67.

Google Scholar

[37] R. Hölzl, M. Blietz, L. Fabry, R. Schmolke, Proc. Semiconductor Silicon 2002, ed. by H. R. Huff, L. Fabry, S. Kishino, in: Electrochem. Soc. Proc. Vol. 2002-2 (2002) 608.

Google Scholar

[38] J. Vanhellemont, J. Appl. Phys., Vol. 78 (1995) 4297.

Google Scholar

[39] J. C. Mikkelsen, Jr., in Oxygen, Carbon, Hydrogen, and Nitrogen in Silicon, edited by I. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook (Materials Research Society, Princeton, NJ, 1986), p.19.

Google Scholar

[40] E. Nes and J. Washburn, J. Appl. Phys., Vol. 44 (1973) 3682.

Google Scholar

[41] G. Das, J. Appl. Phys., Vol. 44 (1973) 4459.

Google Scholar

[42] N. Fujita, R. Jones, S. Öberg, P. R. Briddon, and A. T. Blumenau, Solid State Phenomena, Vols. 131-133 (2008) 259.

DOI: 10.4028/www.scientific.net/ssp.131-133.259

Google Scholar

[43] H. Väinölä, M. Yli-Koski, A. Haarahiltunen, J. Sinkkonen, J. Electrochem. Soc. 150 (2003) G790.

DOI: 10.1149/1.1624845

Google Scholar