Determination of Activation Energy of the Iron Acceptor Pair Association and Dissociation Reaction

Article Preview

Abstract:

A method to measure the reaction rates of the iron acceptor pair association and dissociation is presented and applied. The activation energies of the dissociation and association reaction are determined for the acceptors boron, aluminum, gallium and indium. Additionally, the activation energies are reported for different illumination intensities. It is found that the activation energy of the association reaction varies for the investigated acceptors and that the activation energy of the dissociation reaction depends strongly on the illumination intensity. It is shown that neglecting of the dissociation reaction in the evaluation of relative interstitial iron content decrease causes a considerable overestimation of the activation energy of the iron acceptor association.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

230-235

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Möller, A. Laades, and K. Lauer, Solid State Phenomena 205-206, 265 (2013).

DOI: 10.4028/www.scientific.net/ssp.205-206.265

Google Scholar

[2] L.C. Kimerling and J.L. Benton, Physica B 116, 297 (1983).

Google Scholar

[3] C. Möller, T. Bartel, F. Gibaja, and K. Lauer, J. Appl. Phys. 116, 024503 (2014).

Google Scholar

[4] C. Sun, F.E. Rougieux, and D. Macdonald, J. Appl. Phys. 117, 045702 (2015).

Google Scholar

[5] J. D. Murphy and R. J. Falster, Phys. Status Solidi RRL 5, 370 (2011).

Google Scholar

[6] K. Lauer, C. Möller, D. Schulze, T. Bartel, and F. Kirscht, Phys. Stat. Sol. (RRL) 7, 265 (2013).

Google Scholar

[7] K. Lauer, C. Möller, T. Bartel, and F. Kirscht, Energy Procedia 55, 545 (2014).

Google Scholar

[8] A. Laades, M. Blech, M. Bahr, K. Lauer, and A. Lawerenz, Phys. Stat. Sol. C 8, 763 (2011).

Google Scholar

[9] R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).

Google Scholar

[10] K. Lauer, A. Laades, H. Übensee, H. Metzner, and A. Lawerenz, J. Appl. Phys. 104, 104503 (2008).

DOI: 10.1063/1.3695381

Google Scholar

[11] K. Lauer, M. Herms, A. Grochocki, and J. Bollmann, Solid State Phenom. 178-179, 211 (2011).

DOI: 10.4028/www.scientific.net/ssp.178-179.211

Google Scholar

[12] R. Brendel, Appl. Phys. A 60, 523 (1995).

Google Scholar

[13] G. Zoth and W. Bergholz, J. Appl. Phys. 67, 6764 (1990).

Google Scholar

[14] D. Macdonald, L. J. Geerligs, and A. Azzizi, J. Appl. Phys. 95, 1021 (2004).

Google Scholar

[15] A.A. Istratov, H. Hieslmair, and E.R. Weber, Appl. Phys. A 69, 13 (1999).

Google Scholar

[16] D. V. Lang and L.C. Kimerling, Phys. Rev. Lett. 33, 489 (1974).

Google Scholar

[17] H. Lemke, Phys. Stat. Sol. (a) 64, 215 (1981).

Google Scholar

[18] K. Wünstel and P. Wagner, Appl. Phys. A 27, 207 (1982).

Google Scholar

[19] H. Lemke, Phys. Stat. Sol. (a) 76, 223 (1983).

Google Scholar

[20] J.H. Reiss, R.R. King, and K.W. Mitchell, Appl. Phys. Lett. 68, 3302 (1996).

Google Scholar

[21] E.R. Weber, Appl. Phys. A 30, 1 (1983).

Google Scholar

[22] L. C. Kimerling, MRS Online Proceedings Library 2, 85 (1980).

Google Scholar

[23] D. Macdonald, T. Roth, P.N.K. Deenapanray, K. Bothe, P. Pohl, and J. Schmidt, J. Appl. Phys. 98, (2005).

Google Scholar

[24] S. Beljakova, PhD thesis, (2005).

Google Scholar

[25] T. Bartel, F. Gibaja, O. Graf, D. Gross, M. Kaes, M. Heuer, F. Kirscht, C. Möller, and K. Lauer, Appl. Phys. Lett. 103, 202109 (2013).

DOI: 10.1063/1.4830227

Google Scholar

[26] L.J. Geerligs and D. Macdonald, Appl. Phys. Lett. 85, 5227 (2004).

Google Scholar