Mössbauer Spectroscopy on Fe Impurities in Si Materials

Article Preview

Abstract:

Based on a series of Mössbauer spectroscopic investigations on Fe impurities in p-type and n-type Si materials, we propose a new model for Fe impurities in Si matrix, consisting not only of interstitial Fe, but also substitutional Fe atoms with different charge states. Mössbauer spectroscopy enables us to observe directly these components which transform each other by changing external conditions such as under light illumination, under external voltage, and also under external stress. This means that not only interstitial Fe impurities, but also substitutional Fe impurities appear to be a source for producing “electrically active Fe impurities” in Si materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

211-217

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Istratov, H. Hieslmair, and E. R Weber, Iron and its complexes in silicon, Appl. Phys. A 69 (1999) 13-44.

Google Scholar

[2] A. A. Istratov, H. Hieslmair, and E. R Weber, Iron contamination in silicon technology, Appl. Phys. A 70 (2000) 489-534.

DOI: 10.1007/s003390051074

Google Scholar

[3] D. Macdonald, J. Tan, and T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence, J. Appl. Physics 103 (2008) 073710-7.

DOI: 10.1063/1.2903895

Google Scholar

[4] M. C. Schubert, M. J. Kerler and W. Warta, Influence of heterogeneous profiles in carrier density measurements with respect to iron concentration measurements in silicon, J. Appl. Physics 105 (2009) 114903-6.

DOI: 10.1063/1.3138805

Google Scholar

[5] G. Zoth and W. Bergholz, A fast, preparation‐free method to detect iron in silicon, J. Appl. Phys. 67 (1990) 6764-6771.

DOI: 10.1063/1.345063

Google Scholar

[6] G. Langouche, Characterization of Semiconductors by Mössbauer Spectroscopy, in: G. L. Long, F. Grandjean (Eds. ), Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 3, Plenum Press, New York, London, 1989, pp.445-512.

DOI: 10.1007/978-1-4899-2289-2_10

Google Scholar

[7] D. Gilles, W. Schroter, and W. Bergholz, Impact of the electronic structure on the solubility and diffusion of 3d transition elements in silicon, Phys. Rev. B 41 (1990) 5770-5782.

DOI: 10.1103/physrevb.41.5770

Google Scholar

[8] P. Schwarbach, S. Laubach, M. Hartick, E. kankeleit, B. Keck, M. Menningen, and R. Sielemann, Diffusion and isomer shift of interstitial iron in silicon observed via in-beam Mössbauer spectroscopy, Phys. Rev. Lett. 64 (1990) 1274-1477.

DOI: 10.1103/physrevlett.64.1274

Google Scholar

[9] H. P. Gunnlaugsson, G. Weyer, M. Dietrich, M. Fanciulli, K. Bharuth-Ram, R. Sielemann, and the ISOLDE Collaboration, Charge state dependence of the diffusivity of interstitial Fe in silicon detected by Mössbauer spectroscopy, Appl. Phys. Lett. 80 (2002).

DOI: 10.1063/1.1469216

Google Scholar

[10] G. Langouche and Y. Yoshida, Ion Implantation, in: Y. Yoshida, G. Langouche (Eds. ), Mössbauer Spectroscopy –Tutorial book, Springer-Verlag Berlin Heidelberg, 2013, pp.267-303.

DOI: 10.1007/978-3-642-32220-4_6

Google Scholar

[11] Y. Yoshida, S. Horie, K. Niira, K. Fukui and K. Shirasawa, Physica B 376-377 (2006) 226-230.

Google Scholar

[12] Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, A. Yoshida, H. Ueno, F. Shimura and F. Ambe, Physica B 376-377 (2006) 69-72.

DOI: 10.1016/j.physb.2005.12.019

Google Scholar

[13] Y. Yoshida, Y. Kobayashi, K. Yukihira, K. Hayakawa, K. Suzuki, A. Yoshida, H. Ueno, A. Yoshimi, K. Shimada, D. Nagae, K. Asahi and G. Langouche, 57Fe diffusion in n-type Si after GeV implantation of 57Mn, Physica B 401-402 (2007) 101-104.

DOI: 10.1016/j.physb.2007.08.122

Google Scholar

[14] Y. Yoshida, Y. Suzuki, A. Matsushita, K. Suzuki, and K. Sakata, Fermi level dependence of Mössbauer spectroscopic components corresponding to iron interstitials and their clusters in silicon, Physica B 401–402 (2007) 167–170.

DOI: 10.1016/j.physb.2007.08.138

Google Scholar

[15] Y. Yoshida, S. Aoki, K. Sakata, Y. Suzuki, M. Adachi, and K. Suzuki, Iron impurities in multicrystalline silicon studied by Mössbauer spectroscopy, Physica B 401–402 (2007) 119-122.

DOI: 10.1016/j.physb.2007.08.126

Google Scholar

[16] K. Suzuki, Y. Yoshida, K. Hayakawa, K. Yukihira, M. Ichino, and K. Asahi, Observation of iron impurity diffusion in silicon under bending stress by Mössbauer spectroscopy, Hyperfine Interactions 197 (2010) 213-217.

DOI: 10.1007/s10751-010-0218-z

Google Scholar

[17] Y. Yoshida, K. Suzuki, Y. Kobayashi, T. Nagatomo, Y. Akiyama, K. Yukihira, K. Hayakawa, H. Ueno, A. Yoshimi, D. Nagae, K. Asahi and G. Langouche, 57Fe Charge State in mc-Si Solar cells under Light Illumination After GeV-Implantation of 57Mn, Hyperfine Interactions 204 (2012).

DOI: 10.1007/s10751-011-0424-3

Google Scholar

[18] Y. Yoshida, Y. Tsukamoto, M. Ichino, and K. Tanaka, Direct Observation of Carrier Trapping Processes on Fe impurities in mc-Si Solar Cells, Solid State Phenomena 205-206 (2014) 40-46.

DOI: 10.4028/www.scientific.net/ssp.205-206.40

Google Scholar

[19] K. Tanaka, T. Watanabe, T. Uenoyama, Y. Ino, and Y. Yoshida, Search for FeB Pairs in B-Highly Doped Si Wafers by Mössbauer Spectroscopy, Proceedings of the 7th Forum on the Science and Technology of Silicon Materials, (2014) 107-111.

Google Scholar

[20] Y. Ino, K. Tanaka, and Y. Yoshida, Direct observations of Fe impurities in Si with different Fermi levels by Mössbauer spectroscopy, in GADEST (2015).

DOI: 10.4028/www.scientific.net/ssp.242.205

Google Scholar

[21] J. F. Ziegler and J. P. Biersack, in SRIM - The Stopping and Range of Ions in Solids, (2009).

Google Scholar

[22] J. Kübler, A. E. Kumm, H. Overhof, P. Schwalbach, M. Hartick, E. Kankeleit, B. Keck, L. Wende, R. Sielemann, Isomer-shift of interstitial and substitutional iron in silicon and germanium, Z. Phys. B 92 (1993) 155-162.

DOI: 10.1007/bf01312171

Google Scholar

[23] J. Coutinho, private communication (2015).

Google Scholar

[24] S. K. Estreicher, M. Sanati, and N. Gonzalez Szwacki, Iron in silicon: Interactions with radiation defects, carbon, and oxygen, Phys. Rev. B 77 (2008) 125214-9.

DOI: 10.1103/physrevb.77.125214

Google Scholar