Determination of the Free Gibbs Energy of Plate-Like Precipitates of Hydrogen Molecules and Silicon Vacancies Formed after H+ Ion Implantation into Silicon and Annealing

Article Preview

Abstract:

Hydrogen implantation at room temperature into monocrystalline silicon leads to the formation of complex defects and also to the appearance of in-plane compressive stress. During annealing hydrogen atoms and vacancies co-precipitate into platelets lying on two types of habit planes. These platelets play a decisive role in the fracture of the material that can occur during further annealing and which is used for the manufacture of SOI wafers. Thus, their stress assisted nucleation mechanism has to be well understood. Here, we develop a formalism based on the Volmer’s model which allows calculating the variation of the free Gibbs energy of the system following the nucleation of a platelet. In an unstressed crystal, this energy only relies on the habit plane of the platelet. When the system is under stress, this energy also depends on a term coupling this stress and the strain field generated by the platelet. Because those energies control the nucleation rate of the platelets variants, we could calibrate our model using the transmission electron microscopy observations of the platelets occurrences as a function of depth and, thus, as a function of the magnitude of the intrinsic stress and the angles between the stress direction and Burgers vectors of the considered platelets. These experimental distributions allowed us adjusting the parameters describing the Gibbs free energy of platelets.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

190-195

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bruel, Separation of Silicon wafers by the smart-cut method, Mater. Res. Innov. 3 (1999) 9.

Google Scholar

[2] S. Reboh, F. Rieutord, L. Vignoud, F. Mazen, N. Cherkashin, M. Zussy, D. Landru, C. Deguet , Effect of H-implantation in the local elastic properties of silicon crystals, Appl. Phys. Lett. 103 (2013) 181911.

DOI: 10.1063/1.4828659

Google Scholar

[3] J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si, Appl. Phys. Lett. 76 (7) (2000) 852.

DOI: 10.1063/1.125606

Google Scholar

[4] X. Hebras, P. Nguyen, K.K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, Comparison of platelets formation in hydrogen and helium-implanted silicon, NIMB 262 (2007) 24.

DOI: 10.1016/j.nimb.2007.04.158

Google Scholar

[5] M. Nastasi, T. Höchbauer, J-K Lee, A. Misra, J. P. Hirth, M. Ridgway, T. Lafford, Nucleation and growth of platelets in hydrogen-ion-implanted silicon, Appl. Phys. Lett. 86 (15) (2005) 154102.

DOI: 10.1063/1.1900309

Google Scholar

[6] M. Volmer, Kinetics of Phase Formation(Kinetik der Phasenbildung), Dresden, Germany: Steinkopff, (1939).

Google Scholar

[7] H. Shimizu, E. Brody, H. Mao, P. Bell, Brillouin Measurements of Solid n-H2 and n-D2 to 200 kbar at Room Temperature, Phys. Rev. Lett. 47 (2) (1981)128.

Google Scholar

[8] N. Cherkashin, A. Claverie, Characterization of process-induced defects, in: A. Claverie (ed. ), TEM in Micro-nanoelectronics, Chapter, WILEY, ISBN: 9781848213678, 2012, pp.165-193.

DOI: 10.1002/9781118579022.ch7

Google Scholar

[9] N. Cherkashin, S. Reboh, A. Lubk, M. J. Hÿtch, A. Claverie, Strain in Hydrogen-Implanted Si Investigated Using Dark-Field Electron Holography, Appl. Phys. Express 6 (2013) 091301.

DOI: 10.7567/apex.6.091301

Google Scholar

[10] M. Hÿtch, F. Houdellier, F. Hüe, E. Snoeck, Nanoscale Holographic Interferometry for Strain Measurements in Electronic Devices, Nature 453 (2008) 1086.

DOI: 10.1038/nature07049

Google Scholar

[11] N. Cherkashin, M. Hytch, F. Cristiano, A. Claverie, Structure determination of clusters formed in ultra-low energy high-dose implanted silicon, Solid State Phenom. 108-109 (2005) 303.

DOI: 10.4028/www.scientific.net/ssp.108-109.303

Google Scholar

[12] Y. Qiu, F. Cristiano, K. Huet, F. Mazzamuto, G. Fisicaro, A. La Magna M. Quillec, N. Cherkashin, H. Wang, S. Duguay, D. -C. Blavette, Extended defects formation in nanosecond laser-annealed ion implanted silicon, Nano Lett. 14 (4) (2014) 1769.

DOI: 10.1021/nl4042438

Google Scholar

[13] S. A. Stepanov, http: /sergey. gmca. aps. anl. gov.

Google Scholar

[14] G. Herzberg, A. Monfils, The dissociation energies of the H2, HD, and D2 molecules, J. of Molec. Spectr. 5 (1-6) (1961) 482.

DOI: 10.1016/0022-2852(61)90111-4

Google Scholar

[15] C. G. Van de Walle, R. Street, Silicon-hydrogen bonding and hydrogen diffusion in amorphous silicon, Phys. Rev. B, 51 (16) (1995) 10615.

DOI: 10.1103/physrevb.51.10615

Google Scholar