The Efficiency of Hydrogen-Doping as a Function of Implantation Temperature

Article Preview

Abstract:

– For a conventional proton implantation doping process applied to crystalline silicon comprising proton implantation and subsequent furnace annealing the effect of the substrate temperature set during implantation is examined for temperatures between 50 °C and 200 °C. The formation efficiency of the hydrogen related donors in the maximum of the related doping profiles is shown to linearly increase with the implantation temperature. Regarding the dose rate, a reverted effect is found. The appearing effects are explained by considering the evolution of the initial implantation damage towards a vacancy related precursor species of the hydrogen related donor. Additional information about the implantation temperature dependent defect distribution is gained from Fourier-DLTS results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

175-183

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.H. Schwuttke, K. Brack, E.F. Gorey, Radiation Effects 6 (1970) 103–106.

Google Scholar

[2] R. Job, J.G. Laven, F. -J. Niedernostheide, H. -J. Schulze, H. Schulze, W. Schustereder, Phys. Status Solidi A 209 (2012) 1940–(1949).

DOI: 10.1002/pssa.201200151

Google Scholar

[3] J. Hartung, J. Weber, Materials Science and Engineering B 4 (1989) 47–50.

Google Scholar

[4] Y. Zohta, Y. Ohmura, M. Kanazawa, Jpn. J. Appl. Phys. 10 (1971) 532–533.

Google Scholar

[5] Y. Ohmura, Y. Zohta, M. Kanazawa, Phys. Stat. Sol. (a) 15 (1973) 93–98.

Google Scholar

[6] Y.V. Gorelkinskii, V.O. Sigle, Z.S. Takibaev, Phys. Stat. Sol. (a) 22 (1974) K55-K57.

DOI: 10.1002/pssa.2210220156

Google Scholar

[7] A.T. Isova, V.V. Klimenov, I.S. Nevmerzhitsky, M.A. Zakharov, M.A. Yeleuov, S.Z. Tokmoldin, Physica B: Condensed Matter 404 (2009) 5089–5092.

DOI: 10.1016/j.physb.2009.08.229

Google Scholar

[8] S. Tokmoldin, A.T. Issova, K. Abdullin, B.N. Mukashev, Physica B: Condensed Matter 376-377 (2006) 185–188.

DOI: 10.1016/j.physb.2005.12.049

Google Scholar

[9] W. Wondrak, D. Silber, Physica B+C 129 (1985) 322–326.

Google Scholar

[10] S. Selberherr, P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon, Springer Vienna, Vienna, (2004).

Google Scholar

[11] S.K. Estreicher, J.L. Hastings, Appl. Phys. Lett. 70 (1997) 432–434.

Google Scholar

[12] E.V. Monakhov, B.S. Avset, A. Hallén, B.G. Svensson, Phys. Rev. B 65 (2002).

Google Scholar

[13] M. Jelinek, J.G. Laven, M. Rommel, W. Schustereder, H. -J. Schulze, L. Frey, R. Job, ECS Transactions 64 (2014) 173–185.

DOI: 10.1149/06411.0173ecst

Google Scholar

[14] K. Irmscher, H. Klose, K. Maass, J. Phys. C: Solid State Phys. 17 (1984) 6317–6329.

DOI: 10.1088/0022-3719/17/35/007

Google Scholar

[15] M.W. Hüppi, Materials Science and Engineering: B 2 (1989) 87–90.

Google Scholar

[16] J.G. Laven, M. Jelinek, R. Job, W. Schustereder, H. -J. Schulze, M. Rommel, L. Frey, Phys. Status Solidi B 251 (2014) 2189–2192.

DOI: 10.1002/pssb.201400028

Google Scholar

[17] N. Ganagona, B. Raeissi, L. Vines, E.V. Monakhov, B.G. Svensson, Phys. Status Solidi C 9 (2012) 2009–(2012).

DOI: 10.1002/pssc.201200217

Google Scholar

[18] S. Weiss, R. Kassing, Solid-State Electronics 31 (1988) 1733–1742.

Google Scholar

[19] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268 (2010) 1818–1823.

DOI: 10.1016/j.nimb.2010.02.091

Google Scholar

[20] D.V. Lang, J. Appl. Phys. 45 (1974) 3023.

Google Scholar

[21] J.G. Laven, Protonendotierung von Silizium: Untersuchung und Modellierung protoneninduzierter Dotierungsprofile in Silizium. Univ. Diss., Erlangen-Nürnberg, 2013, Springer Vieweg, Wiesbaden, (2014).

DOI: 10.1007/978-3-658-07390-9

Google Scholar

[22] E. Simoen, C. Claeys, J.M. Rafí, A.G. Ulyashin, Materials Science and Engineering: B 134 (2006) 189–192.

DOI: 10.1016/j.mseb.2006.06.041

Google Scholar

[23] K.L. Wang, Y.H. Lee, J.W. Corbett, Appl. Phys. Lett. 33 (1978) 547.

Google Scholar

[24] J.W. Walker, C.T. Sah, Phys. Rev. B 7 (1973) 4587–4605.

Google Scholar

[25] G.D. Watkins, J.W. Corbett, Phys. Rev. 138 (1965) A543-A555.

Google Scholar