Interplay of Ni and Au Atoms with Dislocations and Vacancy Defects Generated by Moving Dislocations in Si

Article Preview

Abstract:

We show experimentally that dislocations in Si crystals can generate some unknown vacancy complexes Vxtrail in their slip planes during their motion at 600°C. Most of these “dislocation trail defects” are not electrically active but can be detected by their reaction with gold atoms during in-diffusion experiments. It was also shown that contrary to gold, the Vxtrail-complexes do not react with interstitial Ni atoms. It means that the binding energy Ebind of Vxtrail complexes is quite high (Ebind>2.5eV), higher than the binding energy of vacancy complexes generated during FZ-Si crystal growth. It was also shown that Ni in-diffusion results in a strong increase of electron-hole recombination at dislocations and in a strong increase of dislocation-related DLTS C-line.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

147-154

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. E. Bondarenko, V. G. Eremenko, B. Ya. Farber, V. I. Nikitenko, E. B. Yakimov, On the real structure of monocrystalline silicon near dislocation slip planes, Phys. Stat. Sol. A 68 (1981) 53.

DOI: 10.1002/pssa.2210680107

Google Scholar

[2] V. Eremenko, E. Yakimov, N. Abrosimov, Structure and recombination properties of extended defects in the dislocation slip plane in silicon, Phys. Stat. Sol. C 4 (2007) 3100-3104.

DOI: 10.1002/pssc.200675462

Google Scholar

[3] O. V. Feklisova, E. B. Yakimov, Electrical properties of dislocation trails in n-Si, Phys. Stat. Sol. C 4 (2007) 3105-3109.

DOI: 10.1002/pssc.200675464

Google Scholar

[4] O. V. Feklisova, E. B. Yakimov, N. Yarykin, B. Pichaud, Temperature dependence of electron beam induced current contrast of deformation-induced defects in silicon, J. Phys.: Condens. Matter 16 (2004) 201-205.

DOI: 10.1088/0953-8984/16/2/023

Google Scholar

[5] O. V. Feklisova, B. Pichaud, E. B. Yakimov, Annealing effect on the electrical activity of extended defects in plastically deformed p-Si with low dislocation density, Phys. Stat. Sol. A 202 (2005) 896-900.

DOI: 10.1002/pssa.200460511

Google Scholar

[6] O. V. Feklisova, E. B. Yakimov, N. Yarykin, Contribution of the disturbed dislocation slip planes to the electrical properties of plastically deformed silicon, Physica B 340–342 (2003) 1005-1008.

DOI: 10.1016/j.physb.2003.09.196

Google Scholar

[7] М. А. Khorosheva, V. V. Kveder, M. Seibt, On the nature of defects produced by motion of dislocations in silicon, accepted for publication in Phys. Stat. Sol. A (2015).

DOI: 10.1002/pssa.201532153

Google Scholar

[8] A. Rodriguez, H. Bracht, I. Yonenaga, Impact of high B concentrations and high dislocation densities on Au diffusion in Si, J. Appl. Phys. 95 (2004) 7841-7849.

DOI: 10.1063/1.1751235

Google Scholar

[9] N.A. Stolwijk, J. Holzel, W. Frank, E.R. Weber, H. Mehrer, Diffusion of Gold in Dislocation-Free or Highly Dislocated Silicon Measured by the Spreading-Resistance Technique, Appl. Phys. A 39 (1986) 37-48.

DOI: 10.1007/bf01177162

Google Scholar

[10] H. Kitagawa and M. Yoshida, On the Distinction between the Dissociative and Kick-Out Mechanisms for Site Exchange in Silicon, Jpn. J. Appl. Phys. 31 (1992) 2859.

DOI: 10.1143/jjap.31.2859

Google Scholar

[11] E. Weber, Transition Metals in Silicon, Appl. Phys. A 30 (1983) 1-22.

Google Scholar

[12] M. A. Khorosheva, V. I. Orlov, N. V. Abrosimov, V. V. Kveder, Determination of the nonequilibrium concentration of vacancies in silicon crystals by measuring the concentration if nickel atoms at lattice sites, JETP 110 (2010) 769-774.

DOI: 10.1134/s1063776110050067

Google Scholar

[13] V. Kveder, Yu. Osipyan, W. Schröter, G. Zoth, On the energy spectrum of dislocations in silicon, Phys. Stat. Sol. A 72 (1982) 701-713.

DOI: 10.1002/pssa.2210720233

Google Scholar

[14] V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, W. Schröter, Room-temperature silicon light-emitting diodes based on dislocation luminescence, Appl. Phys. Lett. 84 (2004) 2106-2108.

DOI: 10.1063/1.1689402

Google Scholar

[15] M. Jacob, P. Pichler, H. Ryssel, R. Falster, Determination of vacancy concentrations in the bulk of silicon wafers by platinum diffusion experiments, J. Appl. Phys. 82 (1997) 182-191.

DOI: 10.1063/1.365796

Google Scholar

[16] H. Zimmermann, Vacancy Distributions in Silicon and Methods for their Accurate Determination, Defect and Diffusion Forum 153-15 (1998) 111-136.

DOI: 10.4028/www.scientific.net/ddf.153-155.111

Google Scholar

[17] E. Sveinbjörnsson, O. Engström, Reaction kinetics of hydrogen-gold complexes in silicon, Phys. Rev. B 52 (1995) 4884-4895.

DOI: 10.1103/physrevb.52.4884

Google Scholar

[18] P. Omling, E. Weber, L. Montelius, H. Alexander, J. Michel, Electrical properties of dislocations and point defects in plastically deformed silicon, Phys. Rev. B 32 (1985) 6571-6581.

DOI: 10.1103/physrevb.32.6571

Google Scholar

[19] D. Cavalcoli, A. Cavallini, E. Gombia, Defect states in plastically deformed n-type silicon, Phys. Rev. B 56 (1997) 10208-10214.

DOI: 10.1103/physrevb.56.10208

Google Scholar

[20] V. Kveder, V. Orlov, M. Khorosheva, M. Seibt, Influence of the Dislocation Travel Distance on the DLTS Spectra of Dislocations in Cz-Si, Sol. Stat. Phenom. 131-133 (2008) 175-181.

DOI: 10.4028/www.scientific.net/ssp.131-133.175

Google Scholar

[21] D. J. Backlund and S. K. Estreicher, Ti, Fe, and Ni in Si and their interactions with the vacancy and the A center: A theoretical study, Phys. Rev. B 81 (2010) 235213.

Google Scholar

[22] E. Kamiyama, K. Sueoka and J. Vanhellemont, Formation Energy of Intrinsic Point Defects in Si and Ge and Implications for Ge Crystal Growth Electronic Materials and Processing, Journal of Solid State Science and Technology, 2 (2013) 104-109.

DOI: 10.1149/2.002304jss

Google Scholar

[23] V. Kveder, M. Kittler, W. Schröter, Temperature dependence of the recombination activity at contaminated dislocations in Si: A model describing the different EBIC contrast behavior, Phys. Rev. B 63 (2001) 115208.

DOI: 10.4028/www.scientific.net/ssp.69-70.417

Google Scholar

[24] V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, A. Izotov, Silicon light-emitting diodes based on dislocation-related luminescence, Phys. Stat. Sol. A 202 (2005) 901–910.

DOI: 10.1002/pssa.200460512

Google Scholar

[25] M. Seibt, A. Sattler, C. Rudolf, O. Voß, V. Kveder, W. Schröter, Gettering in silicon photovoltaics: current state and future perspectives, Phys. Stat. Sol. (a) 203, (2006) 696–713.

DOI: 10.1002/pssa.200664516

Google Scholar