Vacancy Species Produced by Rapid Thermal Annealing of Silicon Wafers

Article Preview

Abstract:

Rapid thermal annealing (RTA) of Czochralski silicon wafers at around 1260°C installs a depth profile of some vacancy species. Subsequent oxygen precipitation in such wafers is vacancy-assisted. The data on RTA-installed vacancy profiles - and the corresponding precipitate density profiles - suggest that there is a slow-diffusing vacancy species (Vs) along with two fast-diffusing species: a Watkins vacancy (Vw) manifested in irradiation experiments and fast vacancy (Vf) responsible for the high-T vacancy contribution into self-diffusion. The Vs species are lost during cooling stage of RTA, and the loss seems to occur by conversion of Vs into Vf followed by a quick out-diffusion of Vf. A model based on this scenario provides a good fit to the reported profiles of oxide precipitate density in RTA wafers for different values of TRTA and different cooling rates.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

135-140

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. V. Voronkov and R. Falster, Solid State Phenomena 205-206, 157 (2014).

Google Scholar

[2] V. V. Voronkov and R. Falster, Physica Status Solidi B 252, 816 (2014).

Google Scholar

[3] G. D. Watkins, Mater. Science in Semiconductor Processing 3, 227 (2000).

Google Scholar

[4] G. D. Watkins, J. Appl. Phys. 103, 106106 (2008).

Google Scholar

[5] Y. Shimizu, M. Uematsu and K. M. Itoh, Phys. Rev. Lett. 98, 095901-1 (2007).

Google Scholar

[6] H. Bracht, R. Kube, E. Huger and H. Schmidt, Solid State Phenomena 205-206, 151 (2014).

Google Scholar

[7] H. Bracht, E. E. Haller and R. Clark-Felps, Phys. Rev. Lett. 81, 393 (1998).

Google Scholar

[8] A. Ural, P. B. Griffin and J. D. Plummer, Appl. Phys. Lett. 73, 1706 (1998).

Google Scholar

[9] A. Ural, P. B. Griffin and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999).

Google Scholar

[10] V. V. Voronkov and R. Falster, Materials Science and Engineering B 134, 227 (2006).

Google Scholar

[11] N. A. Stolwijk, B. Schuster and J. Holzl, Appl. Phys. A 33, 133 (1984).

Google Scholar

[12] H. Bracht, N. A. Stolwijk and H. Mehrer, Phys. Rev. B 52, 16542 (1995).

Google Scholar

[13] M. Jacob, P. Pichler, H. Ryssel, R. Falster, M. Cornara, D. Gambaro, M. Olmo and M. Pagani, Solid State Phenomena 57-58, 349 (1997).

DOI: 10.4028/www.scientific.net/ssp.57-58.349

Google Scholar

[14] R. Falster, V. V. Voronkov and F. Quast, Phys. Stat. Sol. (b) 222, 219 (2000).

Google Scholar

[15] V. V. Voronkov, R. Falster and P. Pichler, Appl. Phys. Lett. 104, 032106 (2014).

Google Scholar

[16] H. Bracht, J. Fage Peterson, N. Zangenberg, A. Nylandsted Larsen, E. E. Haller, G. Lully and M. Posselt, Phys. Rev. Lett. 91, 245502-1 (2003).

Google Scholar

[17] M. Akatsuka, M. Okui and K. Sueoka, Nuclear Instruments and Methods in Physics Research B 186, 45 (2002).

Google Scholar

[18] S. Mizuo, T. Kusaka, A. Shintani, M. Nanba and H. Higuchi, J. Appl. Physics 54, 3860 (1983).

Google Scholar

[19] V. V. Voronkov and R. Falster, J. Electrochem. Soc. 149, G167 (2002).

Google Scholar