Experimental Proof of the Slow Light-Induced Degradation Component in Compensated n-Type Silicon

Article Preview

Abstract:

We present new experimental data on light-induced degradation due to the boron oxygen defect in compensated n-type silicon. We are the first to show that both defect components known from p-type silicon are formed in compensated n-type silicon. A parameterization of the injection dependent recombination activity of the slower formed defect component is established. The formation kinetics of both defect components are studied and modeled under different conditions. It is found that the same rate factors as in p-type can describe the degradation, if the actual hole concentration under illumination is taken into account. The regeneration process known to permanently deactivate boron oxygen defects in p-type is successfully applied to n-type material and the illumination stability of the regenerated state is tested and proven.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

102-108

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fischer and W. Pschunder. in Proceedings of the 10th IEEEPV. 1973. Palo Alto, USA.

Google Scholar

[2] S. Rein and S.W. Glunz, Appl Phys Lett 82(7), (2003): pp.1054-56.

Google Scholar

[3] K. Bothe and J. Schmidt, J Appl Phys 99(1), (2006): p.013701.

Google Scholar

[4] V.V. Voronkov and R. Falster, J Appl Phys 107(053509), (2010): pp.1-8.

Google Scholar

[5] A. Herguth, G. Schubert, et al. in Proceedings of the 4th WCPEC. 2006. Hawaii, USA.

Google Scholar

[6] R. Kopecek, J. Arumughan, et al. in Proceedings of the 23rd EUPVSEC. 2008. Valencia.

Google Scholar

[7] D. Macdonald, F. Rougieux, et al., J Appl Phys 105, (2009): p.093704.

Google Scholar

[8] B. Lim, A. Liu, et al., Appl Phys Lett 95(23), (2009): p.232109.

Google Scholar

[9] T. Schutz-Kuchly, J. Veirman, et al., Appl Phys Lett 96, (2010): p.

Google Scholar

[10] V.V. Voronkov, R. Falster, et al., Solid State Phenomena 178-179, (2011): pp.139-146.

Google Scholar

[11] V.V. Voronkov, R. Falster, et al., J Appl Phys 110(6), (2011): p.063515.

Google Scholar

[12] B. Lim. Thesis, Leibnitz University Hannover. 2012, http: /d-nb. info/1021189596.

Google Scholar

[13] M. Forster, E. Fourmond, et al., Appl Phys Lett 100(4), (2012): p.042110.

Google Scholar

[14] J. Broisch, J. Haunschild, et al., IEEE J. Photovolt. 5(1), (2015): pp.269-275.

Google Scholar

[15] J. Seiffe, L. Gautero, et al., J. Appl. Phys. 109(3), (2011): p.034105.

Google Scholar

[16] J. Giesecke, M.C. Schubert, et al., Appl Phys Lett 97(9), (2010): p.092109.

Google Scholar

[17] S. Wilking, M. Forster, et al., Sol Energ Mat Sol C (submitted), (2015): p.

Google Scholar

[18] R.A. Sinton and A. Cuevas, Appl Phys Lett 69(17), (1996): pp.2510-2.

Google Scholar

[19] F. Dannhäuser, Solid-State Electronics 15(12), (1972): pp.1371-5.

Google Scholar

[20] J. Krausse, Solid-State Electronics 15(12), (1972): pp.1377-81.

Google Scholar

[21] M. Forster, P. Wagner, et al., Sol Energ Mat Sol C 120, (2014): pp.390-395.

Google Scholar

[22] F. Schindler, M. Forster, et al., Sol Energ Mat Sol C 131, (2014): pp.92-99.

Google Scholar

[23] W. Shockley and W.T.J. Read, Physical Review 87(5), (1952): pp.835-42.

Google Scholar

[24] R.N. Hall, Physical Review 87(2), (1952): p.387.

Google Scholar

[25] J.D. Murphy, K. Bothe, et al., J Appl Phys 111(11), (2012): p.113709.

Google Scholar

[26] T. Niewelt, J. Broisch, et al., Energy Procedia (accepted), (2015): p.

Google Scholar

[27] A. Herguth and G. Hahn, J Appl Phys 108(11), (2010): p.

Google Scholar

[28] S. Wilking, C. Beckh, et al., Sol Energ Mat Sol C 131(0), (2014): pp.2-8.

Google Scholar

[29] C. Sun, F.E. Rougieux, et al., J Appl Phys 117(4), (2015): p.045702.

Google Scholar