Investigation into Efficiency-Limiting Defects in mc-Si Solar Cells

Article Preview

Abstract:

First-principles quantum-chemical simulations are combined with TCAD device modelling to examine the impact of the intrinsic stacking faults and Σ5-(001) twist grain-boundaries on the performance of solar cell efficiency. We find from the combination of these computational methods, the optical properties of ideal stacking faults are similar to those of pure Si, whereas the optimised grainboundaryleads to a clear change in the real and imaginary parts of refractive index, increasing the solar-cell current density, and thus the solar cell efficiency. The impact at a device level is dependent upon the areal density of such material. So far as the optically absorption and carrier generation is concerned, segregation of diffusing iron at these planar defects has a negligible impact on device characteristics, but non-radiative recombination processes and carrier traps due to iron are expected to significantly affect efficiency in these regions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

96-101

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. D. Compaan, Photovoltaics: clean power for the 21st century, Solar Energy Mater. and Solar Cells, vol. 90, no. 15, pp.2170-2180, (2006).

DOI: 10.1016/j.solmat.2006.02.017

Google Scholar

[2] J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, and R. P. Mertens, Advanced manufacturing concepts for crystalline silicon solar cells, IEEE Trans. Electron Devices, vol. 46, no. 10, pp.1948-1969, (1999).

DOI: 10.1109/16.791983

Google Scholar

[3] S. Myers, M. Seibt, and W. Schr¨oter, Mechanisms of transition-metal gettering in silicon, J. Appl. Phys., vol. 88, no. 7, p.3795, (2000).

Google Scholar

[4] J. Reiss, R. King, and K. Mitchell, Characterization of diffusion length degradation in czochralski silicon solar cells, Appl. Phys. Lett., vol. 68, no. 23, pp.3302-3304, (1996).

DOI: 10.1063/1.116581

Google Scholar

[5] A. A. Istratov, T. Buonassisi, R. McDonald, A. Smith, R. Schindler, J. Rand, J. P. Kalejs, and E. R. Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys., vol. 94, no. 10, pp.6552-6559, (2003).

DOI: 10.1063/1.1618912

Google Scholar

[6] A. Istratov, H. Hieslmair, and E. Weber, Iron contamination in silicon technology, Appl. Phys. A, vol. 70, no. 5, pp.489-534, (2000).

DOI: 10.1007/s003390051074

Google Scholar

[7] R. Raghunathan, E. Johlin, and J. C. Grossman, Grain boundary engineering for improved thin silicon photovoltaics, Nano Letters, vol. 14, no. 9, pp.4943-4950, (2014).

DOI: 10.1021/nl501020q

Google Scholar

[8] M. Rumler, M. Rommel, J. Erlekampf, M. Azizi, T. Geiger, A. J. Bauer, E. Meißner, and L. Frey, Characterization of grain boundaries in multicrystalline silicon with high lateral resolution using conductive atomic force microscopy, J. Appl. Phys., vol. 112, no. 3, p.034909, (2012).

DOI: 10.1063/1.4746742

Google Scholar

[9] A. Y. Liu and D. Macdonald, Precipitation of interstitial iron in multicrystalline silicon, Solid State Phenomena, vol. 205, pp.34-39, (2014).

DOI: 10.4028/www.scientific.net/ssp.205-206.34

Google Scholar

[10] J. Zhang, C. -Z. Wang, and K. -M. Ho, "Finding the low-energy structures of si.

Google Scholar

[1] symmetric tilted grain boundaries with a genetic algorithm, " Phys. Rev. B, vol. 80, no. 17, p.174102, (2009).

Google Scholar

[11] F. Cleri, P. Keblinski, L. Colombo, S. R. Phillpot, and D. Wolf, Correlation between atomic structure and localized gap states in silicon grain boundaries, Phys. Rev. B, vol. 57, no. 11, p.6247, (1998).

DOI: 10.1103/physrevb.57.6247

Google Scholar

[12] K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, and K. Nakajima, Influence of structural imperfection of Σ5 grain boundaries in bulk multicrystalline si on their electrical activities, J. Appl. Phys., vol. 101, no. 6, pp.063-063509, (2007).

DOI: 10.1063/1.2710348

Google Scholar

[13] J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, and S. Tsurekawa, Electron-beam-induced current study of grain boundaries in multicrystalline silicon, J. Appl. Phys., vol. 96, no. 10, pp.5490-5495, (2004).

DOI: 10.1063/1.1797548

Google Scholar

[14] R. Jones and P. R. Briddon, The ab initio cluster method and the dynamics of defects in semiconductors, ser. Semiconductors and Semimetals. Boston: Academic Press, 1998, vol. 51A, ch. 6.

DOI: 10.1016/s0080-8784(08)63058-6

Google Scholar

[15] O. A. Al-Ani, J. P. Goss, N. E. B. Cowern, P. R. Briddon, M. Al-Hadidi, R. Al-Hamadany, and M. J. Rayson, A density functional study of iron segregation at isfs and Σ5-(001) GBs in mc-Si, GADEST 2015, Sept (2015).

DOI: 10.4028/www.scientific.net/ssp.242.224

Google Scholar

[16] C. J. Fall, R. Jones, P. R. Briddon, A. T. Blumenau, T. Frauenheim, and M. I. Heggie, Influence of dislocations on electron energy-loss spectra in gallium nitride, Phys. Rev. B, vol. 65, no. 24, p.245304, (2002).

DOI: 10.1103/physrevb.65.245304

Google Scholar

[17] C. J. Fall, A. T. Blumenau, R. Jones, P. R. Briddon, T. Frauenheim, A. Guti´errez-Sosa, U. Bangert, A. E. Mora, J. W. Steeds, and J. E. Butler, Dislocations in diamond: Electron energy-loss spectroscopy, Phys. Rev. B, vol. 65, no. 20, p.205206, (2002).

DOI: 10.1103/physrevb.65.205206

Google Scholar

[18] T. C. A. D. Sentaurus, Synopsys Inc., edition I-2013. 12, (2013).

Google Scholar

[19] F. Bouchard, A. W. Walker, Z. Mi, and K. Hinzer, Modeling a monocrystalline Cu(In, Ga)Se2 single junction solar cell grown on a GaAs substrate, Proc. SPIE, vol. 8915, p.891507, (2013).

DOI: 10.1117/12.2036189

Google Scholar