Discussion of ASi-Sii-Defect Model in Frame of Experimental Results on P Line in Indium Doped Silicon

Article Preview

Abstract:

Further experimental support for the ASi-Sii-defect as cause of light-induced degradation and as the defect responsible for a photoluminescence peak called P line in indium doped silicon is given. The ASi-Sii-defect model has two main implications related to oxygen clustering during Czochralski crystal growth and the common understanding of the boron interstitial defect. These implications are discussed and it is shown that the ASi-Sii-defect model is in agreement with available experimental data related to oxygen clustering and the boron interstitial defect.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

90-95

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.L. Crabb, in: Proc. 9th IEEE PVSC, 1972 (IEEE, New York), p.329.

Google Scholar

[2] H. Fischer and W. Pschunder, in: Proc. 10th IEEE PVSC, 1973 (IEEE, New York), p.404.

Google Scholar

[3] K. Graff and H. Pieper, Phys. Stat. Sol. (a) 30, 593 (1975).

Google Scholar

[4] J. Fodor and R. Opjordan, in: Proc. 14th IEEE PVSC, 1980 (IEEE, New York), p.882.

Google Scholar

[5] S. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, Sol. Energy Mater. Sol. Cells 65, 219 (2001). 2. 0 2. 1 2. 2 2. 3 2. 4 2. 5 2. 6 2. 7 2. 8 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Lim et al.

DOI: 10.1016/s0927-0248(00)00098-2

Google Scholar

[48] Bothe et al.

Google Scholar

[6] Rein et al.

Google Scholar

[49] Yarykin et al.

Google Scholar

[47] p.0 = 10 16 cm -3 H3 0 -center dissociation EA = (1. 37±0. 02) eV BSi-Sii-defect (transition 5=>1) EA = (1. 36±0. 06) eV transition rate R5, 1 [s-1] inverse temperature T -1.

Google Scholar

[1000] /K] Fig. 4: Comparison of the H30-center dissociation rate with the transition rate of the BSi-Sii-defect from state 5 to 1.

Google Scholar

[6] K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006).

Google Scholar

[7] C. Möller and K. Lauer, Phys. Stat. Sol. (RRL) 7, 461 (2013).

Google Scholar

[8] S. Wilking et al., Sol. Energy Mater. Sol. Cells 131, 2 (2014).

Google Scholar

[9] T. Mchedlidze and J. Weber, Phys. Stat. Sol. (RRL) 9, 108 (2015).

Google Scholar

[10] K. Lauer, C. Möller, D. Schulze, and C. Ahrens, AIP Advances 5, 017101 (2015).

Google Scholar

[11] C. Möller and K. Lauer, Energy Procedia 55, 559 (2014).

Google Scholar

[12] K. Lauer, A. Laades, H. Übensee, H. Metzner, and A. Lawerenz, J. Appl. Phys. 104, (2008).

Google Scholar

[13] S.W. Glunz et al, in Proc. 2nd IEEE WCPVEC, Vienna, 1998, p.1343.

Google Scholar

[14] W. Pschunder and H. Fischer, in: Proc. 12th IEEE PVSC, 1976 (IEEE, New York), p.270.

Google Scholar

[15] S. Rein, S. Diez, R. Falster, and S.W. Glunz, in Proc. 3rd WCPVEC, Osaka, 2003, p.1048.

Google Scholar

[16] J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).

Google Scholar

[17] P. Chen, X. Yu, X. Liu, X. Chen, Y. Wu, and D. Yang, Appl. Phys. Lett. 102, 082107 (2013).

Google Scholar

[18] S.Y. Lim, F.E. Rougieux, and D. Macdonald, Applied Physics Letters 103, 092105 (2013).

Google Scholar

[19] G. Lindström on behalf the RD48 (ROSE) coll., Nucl. Inst. and Meth. A 466, 308 (2001).

Google Scholar

[20] J. Lindström et al., Nucl. Inst. and Meth. B 186, 121 (2002).

Google Scholar

[21] R. Swaroop, N. Kim, W. Lin, M. Bullis, L. Shive, A. Rice, E. Castel, and M. Christ, Solid State Technol. 3, 85 (1987).

Google Scholar

[22] Semiconductor Equipment and Materials International, SEMI MF1239-02.

Google Scholar

[23] J. Vanhellemont, J. Esfandyari, G. Obermeier, E. Dornberger, D. Gräf, and G. Kissinger, Elec. Soc. Proc. 98-13, 101 (1998).

Google Scholar

[24] M. Hourai, T. Nagashima, E. Kajita, S. Miki, T. Shigematsu, and M. Okui, J. Elec. Soc. 142, 3193 (1995).

DOI: 10.1149/1.2048712

Google Scholar

[25] R. Falster private communication.

Google Scholar

[26] D. Walter, B. Lim, K. Bothe, R. Falster, V. Voronkov, and J. Schmidt, in 27th European PVSEC, Frankfurt, Germany, (WIP Munich, 2012), p.775.

Google Scholar

[27] S.Y. Lim, F.E. Rougieux, and D. Macdonald, Applied Physics Letters 103, 092105 (2013).

Google Scholar

[28] R. Falster, V. Voronkov, V. Resnik, and M. Milvidskii, Electrochem. Soc. Proc. 05, 188 (2004).

Google Scholar

[29] G. Kissinger, T. Müller, A. Sattler, W. Häckl, P. Krottenthalerc, T. Grabolla, H. Richter, and W. von Ammon, Mat. Sci. Sem. Proc. 9, 236 (2006).

DOI: 10.1016/j.mssp.2006.01.039

Google Scholar

[30] G. Kissinger private communication.

Google Scholar

[31] T. Tan and W. Taylor in Oxygen in Silicon (Academic Press, 1994).

Google Scholar

[32] W. Bergholz, J.L. Hutchison, and P. Pirouz, J. Appl. Phys. 58, 3419 (1985).

Google Scholar

[33] H. Bender and J. Vanhellemont, Physica Status Solidi (a) 107, 455 (1988).

Google Scholar

[34] J. Vanhellemont, O. De Gryse, and P. Clauws, Physica B 340-342, 1056 (2003).

Google Scholar

[35] S. McQuaid et al., J. Appl. Phys. 77, 1427 (1995).

Google Scholar

[36] D. Mathiot, Mat. Res. Soc. Symp. Proc. Vol. 104, 189 (1988).

Google Scholar

[37] J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).

Google Scholar

[38] P. Chen, X. Yu, Y. Wu, J. Zhao, and D. Yang, J. Appl. Phys. 112, 084509 (2012).

Google Scholar

[39] Y. Latushko, L. Makarenko, V. Markevich, and L. Murin, Phys. Stat. Sol. (a) 93, K181 (1986).

DOI: 10.1002/pssa.2210930257

Google Scholar

[40] P. Wagner and J. Hage, Appl. Phys. A 49, 123 (1989).

Google Scholar

[41] L. Murin, V. Markevich, J. Lindström, and M. Kleverman, Physica B 340-342, 1046 (2003).

DOI: 10.1016/j.physb.2003.09.208

Google Scholar

[42] J. Coutinho, R. Jones, P.R. Briddon, and S. Öberg, Phys. Rev. B 62, 10824 (2000).

Google Scholar

[43] E. Tarnow, Europhys. Lett. 16, 449 (1991).

Google Scholar

[44] G.D. Watkins, Phys. Rev. B 12, 5824 (1975).

Google Scholar

[45] J. Troxell and G. Watkins, Phys. Rev. B 22, 921 (1980).

Google Scholar

[46] R.D. Harris, G.D. Watkins, and L.C. Kimerling, Mat. Sci. For. 10-12, 163 (1986).

Google Scholar

[47] N. Yarykin, O. Feklisova, and J. Weber, Phys. Rev. B 69, (2004).

Google Scholar

[48] B. Lim, V. Voronkov, R. Falster, K. Bothe, and J. Schmidt, Appl. Phys. Lett. 98, 162104 (2011).

Google Scholar

[49] S. Rein et al., in Proc. 17th European PVSEC, WIP Munich (2001), p.1555.

Google Scholar