BO-Related Defects: Overcoming Bulk Lifetime Degradation in Crystalline Si by Regeneration

Article Preview

Abstract:

Boron-oxygen related defects formed under working conditions of a c-Si solar cell can be a showstopper for new cell concepts enabling higher conversion efficiencies. The recombination activity of these defects can be reduced to negligible values by a regeneration process under elevated temperatures and in the presence of excess charge carriers in the Si bulk. It is shown that this process also relies on the presence of H in the c-Si bulk. Regeneration kinetics can be sped up by higher temperatures, higher concentrations of excess charge carriers and higher H concentration in the c-Si bulk. But care has to be taken to avoid a destabilization reaction taking place at higher temperature, resulting in the BO-related defects being again present in the recombination-active state. A 3-state model with the corresponding reaction rates between the different defects states describes the experimental findings and can be used for predictions of an optimized regeneration process.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

80-89

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fischer, W. Pschunder, Investigation of photon and thermal induced changes in silicon solar cells, in: Proc. 10th IEEE PVSC, Palo Alto, USA, 1973, pp.404-411.

Google Scholar

[2] S.W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, Degradation of carrier lifetime in Cz silicon solar cells, Sol. En. Mat. Sol. Cells 65 (2001) 219-229.

DOI: 10.1016/s0927-0248(00)00098-2

Google Scholar

[3] J. Schmidt A. Cuevas, Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon, J. Appl. Phys. 86(6) (1999) 3175-3180.

DOI: 10.1063/1.371186

Google Scholar

[4] S. Rein, R. Falster, S.W. Glunz, S. Diez, Quantitative correlation of the metastable defect in Cz-silicon with different impurities, in: Proc. 3rd WCPEC, Osaka, Japan, 2003, pp.1048-1052.

Google Scholar

[5] K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon, Prog. Photovolt.: Res. Appl. 13 (2005) 287-296.

DOI: 10.1002/pip.586

Google Scholar

[6] J. Schmidt, K. Bothe, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon, Phys. Rev. B 69 (2004) 024107.

DOI: 10.1103/physrevb.69.024107

Google Scholar

[7] A. Herguth, G. Schubert, M. Kaes, G. Hahn, A new approach to prevent the negative impact of the metastable defect in boron doped Cz silicon solar cells, In: Proc. 4th WCPEC, Waikoloa, USA, 2006, pp.940-943.

DOI: 10.1109/wcpec.2006.279611

Google Scholar

[8] A. Herguth, G. Schubert, M. Kaes, G. Hahn, Avoiding boron-oxygen related degradation in highly boron doped Cz silicon, In: Proc. 21st EC PVSEC, Dresden, Germany, 2006, pp.530-537.

DOI: 10.1109/wcpec.2006.279611

Google Scholar

[9] A. Herguth, M. Kaes, G. Schubert, G. Hahn, Further investigations on the avoidance of boron-oxygen related degradation by means of regeneration, In: Proc. 22nd EC PVSEC, Milan, Italy, 2007, pp.893-896.

Google Scholar

[10] A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron–oxygen complex in crystalline silicon, Progr. Photovolt.: Res. Appl. 16(2) (2008) 135-140.

DOI: 10.1002/pip.779

Google Scholar

[11] A. Herguth, R. Horbelt, S. Wilking, R. Job, G. Hahn, Comparison of BO Regeneration dynamics in PERC and Al-BSF solar cells: submitted to Energy Procedia (2015).

DOI: 10.1016/j.egypro.2015.07.012

Google Scholar

[12] K.A. Münzer, Hydrogenated silicon nitride for regeneration of Light Induced Degradation, In: Proc. 24th EUPVSEC, Hamburg, Germany, 2009, pp.1558-1561.

Google Scholar

[13] G. Krugel, W. Wolke, J. Geilker, S. Rein, R. Preu, Impact of hydrogen concentration on the regeneration of Light Induced Degradation, En. Proc. 8 (2011) 47-51.

DOI: 10.1016/j.egypro.2011.06.100

Google Scholar

[14] S. Wilking, C. Beckh, S. Ebert, A. Herguth, G. Hahn, Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes, Sol. En. Mat. Sol. Cells 131 (2014) 2-8.

DOI: 10.1016/j.solmat.2014.06.027

Google Scholar

[15] S. Wilking, A. Herguth, G. Hahn, Influence of hydrogen on the regeneration of boron-oxygen related defects in crystalline silicon, J. Appl. Phys. 113 (2013) 194503.

DOI: 10.1063/1.4804310

Google Scholar

[16] S. Wilking, S. Ebert, A. Herguth, G. Hahn, Influence of short high temperature steps on the regeneration of boron-oxygen related defects, in: Proc. 28th EU PVSEC, Paris, France, 2013, pp.34-38.

DOI: 10.1016/j.egypro.2013.07.328

Google Scholar

[17] S. Wilking, S. Ebert, A. Herguth, G. Hahn, Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon, J. Appl. Phys. 114 (2013) 194512.

DOI: 10.1063/1.4833243

Google Scholar

[18] A. Herguth, G. Hahn, Kinetics of the boron-oxygen related defect in theory and experiment, J. Appl. Phys. 108 (2010) 114509.

DOI: 10.1063/1.3517155

Google Scholar

[19] S. Wilking, M. Forster, A. Herguth, G. Hahn, From simulation to experiment: understanding BO-regeneration kinetics: submitted to Sol. En. Mat. Sol. Cells (2015).

DOI: 10.1016/j.solmat.2015.06.012

Google Scholar

[20] J. Schmidt, K. Bothe, Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon, Phys. Rev. B 69 (2004) 024107.

DOI: 10.1103/physrevb.69.024107

Google Scholar

[21] S. Rein, T. Rehrl, W. Warta, S.W. Glunz, G. Willeke, Electrical and thermal properties of the metastable defect in boron-doped Czochralski silicon (Cz-Si), in: Proc. 17th EC PVSEC, Munich, Germany, 2001, pp.1555-1560.

Google Scholar

[22] S.W. Glunz, E. Schäffer, S. Rein, K. Bothe, J. Schmidt, Analysis of the defect activation in Cz silicon by temperature dependent bias-induced degradation of solar cells, in: Proc. 3rd WCPEC, Osaka, Japan, 2003, pp.919-922.

Google Scholar

[23] S. Wilking, J. Engelhardt, S. Ebert, C. Beckh, A. Herguth, G. Hahn, High speed regeneration of BO-defects: improving long-term solar cell performance within seconds, In: Proc. 29th EUPVSEC, Amsterdam, Netherlands, (2014).

DOI: 10.1016/j.solmat.2014.06.027

Google Scholar

[24] B.J. Hallam, P.G. Hamer, S. Wang, L. Song, N. Nampalli, M.D. Abbott, C. Chan, D. Lu, A.M. Wenham, L. Mai, N. Borojevic, A. Li, D. Chen, M.Y. Kim, A. Azmi, S. Wenham, Advanced hydrogenation of dislocation clusters and boron-oxygen defects in silicon solar cells: submitted to En. Procedia (2015).

DOI: 10.1016/j.egypro.2015.07.113

Google Scholar

[25] S.A. McQuaid, M.J. Binns, R.C. Newman, E.C. Lightowlers, J.B. Clegg, Solubility of hydrogen in silicon at 1300°C, Appl. Phys. Lett. 62 (14) (1993) 1612-1614.

DOI: 10.1063/1.108602

Google Scholar

[26] P. Hamer, B. Hallam, S. Wenham, M. Abbott, Manipulation of hydrogen charge states for passivation of p-type wafers in photovoltaics, IEEE J. Photovolt. 4 (2014) 1252-1260.

DOI: 10.1109/jphotov.2014.2339494

Google Scholar

[27] C. Sun, F.E. Rougieux, and D. Macdonald, A unified approach to modelling the charge state of monatomic hydrogen and other defects in crystalline silicon, J. Appl. Phys. 117 (2015) 045702.

DOI: 10.1063/1.4906465

Google Scholar

[28] S. Dubois, N. Enjalbert, J.P. Garandet, R. Monna, J. Kraiem, Light-Induced Degradation and Regeneration in compensated upgraded metallurgical silicon, in: Proc. 23rd EU PVSEC, Valencia, Spain, 2008, pp.1437-1440.

Google Scholar

[29] B. Lim, A. Liu, D. Macdonald, K. Bothe, and J. Schmidt, Impact of dopant compensation on the deactivation of boron-oxygen recombination centers in crystalline silicon, Appl. Phys. Lett. 95 (2009) 232109.

DOI: 10.1063/1.3272918

Google Scholar

[30] R. Sondena, A. Holt, A.K. Soiland, Electrical properties of compensated n- and p-type monocrystalline silicon, in: Proc. 26th EUPVSEC, Hamburg, Germany, 2011, pp.1824-1828.

Google Scholar