Investigation of Parasitic Edge Recombination in High-Lifetime Oxidized n-Si

Article Preview

Abstract:

An investigation of the parasitic surface recombination mechanisms in high-lifetime oxidized n-Si is presented. An approximate analytical expression describing recombination at the edge of square shaped specimens is derived. This shows that edge recombination can have a significant effect on the effective lifetime as measured using the transient photo-conductance technique and that for well passivated high quality material edge recombination can be the dominant mechanism in reducing the effective lifetime below the intrinsic level. For 3 x 3 cm2 pieces of silicon measured using a Sinton photo-conductance lifetime instrument, it is shown that recombination at the edge of the sample results in an additional component to the measured lifetime of around 16 ms at an injection level of 1015 cm-3. When this effect is taken into account measurements of 1 Ωcm FZ-Si show that a SRV as low as 1.5 cm/s is possible when the surface is passivated using a corona charge concentration of +2.2 x 1012 q/cm2 deposited on a 100 nm oxide layer.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

73-79

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Bonilla, F. Woodcock, P.R. Wilshaw, Very low surface recombination velocity in n-type c-Si using extrinsic field effect passivation, J. Appl. Phys. 116 (2014) 054102.

DOI: 10.1063/1.4892099

Google Scholar

[2] A.G. Aberle, S. Glunz, W. Warta, Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si-SiO2 interface, J. Appl. Phys. 71 (1992) 4422–4431.

DOI: 10.1063/1.350782

Google Scholar

[3] A. Aberle, S. Glunz, W. Warta, Field effect passivation of high efficiency silicon solar cells, Sol. Energy Mater. Sol. Cells. 29 (1993) 175–182. http: /dx. doi. org/10. 1016/0927-0248(93)90075-E (accessed August 1, 2012).

DOI: 10.1016/0927-0248(93)90075-e

Google Scholar

[4] S.W. Glunz, D. Biro, S. Rein, W. Warta, Field-effect passivation of the SiO2 Si interface, J. Appl. Phys. 86 (1999) 683–691. doi: 10. 1063/1. 370784.

DOI: 10.1063/1.370784

Google Scholar

[5] V. Leonov, P. Fiorini, C. Van Hoof, Stabilization of positive charge in SiO2/Si3N4 electrets, IEEE Trans. Dielectr. Electr. Insul. 13 (2006) 1049–1056. doi: 10. 1109/TDEI. 2006. 247831.

DOI: 10.1109/tdei.2006.247831

Google Scholar

[6] S. Dauwe, J. Schmidt, A. Metz, R. Hezel, Fixed charge density in silicon nitride films on crystalline silicon surfaces under illumination, in: Conf. Rec. Twenty-Ninth IEEE Photovolt. Spec. Conf. 2002., IEEE, n. d.: p.162.

DOI: 10.1109/pvsc.2002.1190481

Google Scholar

[7] I. Martin, B. Hoex, M.C.M. van de Sanden, R. Alcubilla, W.M.M. Kessels, The origin of emitter-like recombination for inverted c-Si surfaces, in: 23rd Eur. Photovolt. Sol. Energy Conf., Valencia, Spain, n. d. http: /www. tue. nl/en/publication/ep/p/d/ep-uid/238107/?no_cache=1 (accessed January 18, 2013).

Google Scholar

[8] F. -J. Ma, G.G. Samudra, M. Peters, A.G. Aberle, F. Werner, J. Schmidt, et al., Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers, J. Appl. Phys. 112 (2012) 054508. doi: 10. 1063/1. 4749572.

DOI: 10.1063/1.4749572

Google Scholar

[9] S. Steingrube, P.P. Altermatt, D.S. Steingrube, J. Schmidt, R. Brendel, Interpretation of recombination at c-Si/SiN[sub x] interfaces by surface damage, J. Appl. Phys. 108 (2010) 014506. doi: 10. 1063/1. 3437643.

DOI: 10.1063/1.3437643

Google Scholar

[10] B. Veith, T. Ohrdes, F. Werner, R. Brendel, P. Altermatt, N. -P. Harder, et al., Injection dependence of the effective lifetime of n-type Si passivated by Al2O3 : an edge effect?, in: Proc. SiliconPV 2013 - Solomat, n. d.: pp. Hamelin, Germany.

DOI: 10.1016/j.solmat.2013.06.049

Google Scholar

[11] R.A. Sinton, A. Cuevas, M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization, in: Photovolt. Spec. Conf. 1996., Conf. Rec. Twenty Fifth IEEE, 1996: p.457.

DOI: 10.1109/pvsc.1996.564042

Google Scholar

[12] I.D. Baikie, S. Mackenzie, P.J.Z. Estrup, J.A. Meyer, Noise and the Kelvin method, Rev. Sci. Instrum. 62 (1991) 1326–1332. doi: 10. 1063/1. 1142494.

DOI: 10.1063/1.1142494

Google Scholar

[13] R.S. Bonilla, P.R. Wilshaw, Stable field effect surface passivation of n-type Cz silicon, in: Energy Procedia - Proc. 3rd Silicon PV Conf., Elsevier, Hamelin, Germany, 2013: p.816–822. doi: 10. 1016/j. egypro. 2013. 07. 351.

DOI: 10.1016/j.egypro.2013.07.351

Google Scholar

[14] Z. Hameiri, F. -J. Ma, K.R. McIntosh, Investigation of low injection effects using the local ideality factor obtained from effective lifetime measurements, in: 2014 IEEE 40th Photovolt. Spec. Conf., IEEE, 2014: p.1842.

DOI: 10.1109/pvsc.2014.6925282

Google Scholar

[15] F. -J. Ma, Z. Hameiri, G.S. Samudra, M. Peters, B. Hoex, Numerical analysis of injection level dependent effective lifetime on 125 mm undiffused lifetime samples, in: 2014 IEEE 40th Photovolt. Spec. Conf., IEEE, 2014: p.3313.

DOI: 10.1109/pvsc.2014.6925643

Google Scholar

[16] A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B. 86 (2012) 165202. doi: 10. 1103/PhysRevB. 86. 165202.

DOI: 10.1103/physrevb.86.165202

Google Scholar

[17] K. McIntosh, M. Abbott, PV LightHouse Mobility Calculator, (2015). www. pvlighthouse. com. au.

Google Scholar

[18] D.B.M. Klaassen, A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime, Solid. State. Electron. 35 (1992) 961–967. doi: 10. 1016/0038-1101(92)90326-8.

DOI: 10.1016/0038-1101(92)90326-8

Google Scholar

[19] K.L. Luke, L. -J. Cheng, Analysis of the interaction of a laser pulse with a silicon wafer: Determination of bulk lifetime and surface recombination velocity, J. Appl. Phys. 61 (1987).

DOI: 10.1063/1.337938

Google Scholar