Impact of the Gate Material on the Deep Levels in a-Si:H/c-Si Metal-Insulator-Semiconductor Capacitors

Article Preview

Abstract:

Deep Level Transient Spectroscopy (DLTS) has been applied to Metal-Insulator-Semiconductor (MIS) capacitors, consisting of a p+ or n+ a-Si:H gate on an intrinsic i-a-Si:H passivation layer deposited on crystalline silicon n-or p-type substrates. It is shown that the type of gate has a pronounced impact on the obtained spectra, whereby both the kind of defects (dangling bonds at the a-Si:H/(100) c-Si interface (Pb0 defects) or in the amorphous silicon layer (D defects) and their relative importance (peak amplitude) may be varied. The highest trap densities have been found for the p+ a-Si:H gate capacitors on an n-type Si substrate. In addition, the spectra may exhibit unexpected negative peaks, suggesting minority carrier capture. These features are tentatively associated with interface states at the p+ or n+ a-Si:H/i-a-Si:H interface. Their absence in Al-gate capacitors is in support of this hypothesis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

61-66

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. De Wolf, A. Descoeudres, Z.C. Holman, C. Ballif, High-efficiency silicon heterojunction solar cells: A review, Green 2 (2012) 7-24.

DOI: 10.1515/green-2011-0018

Google Scholar

[2] J. -W. A. Schüttauf, K.H.M. van der Werf, I.M. Kielen, W.G.J.H.M. van Stark, J.K. Rath, R.E.I. Schropp, Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition, Appl. Phys. Lett. 98 (2011).

DOI: 10.1063/1.3579540

Google Scholar

[3] C. Leendertz, N. Mingirulli, T.F. Schulze, J.P. Kleider, B. Rech, L. Korte, Discerning passivation mechanisms at a-Si: H/c-Si interfaces by means of photoconductance measurements, Appl. Phys. Lett. 98 (2011) 202108/1-3.

DOI: 10.1063/1.3590254

Google Scholar

[4] A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guérin, Z.C. Holman, F. Zicarelli, B. Memaurex, J. Seif, J. Holovsky, C. Ballif, Improved amorphous/crystalline interface passivation by hydrogen plasma treatment, Appl. Phys. Lett. 99 (2011).

DOI: 10.1063/1.3641899

Google Scholar

[5] V.A. Dao, Y. Lee, S. Kim, J. Cho, S. Ahn, Y. Kim, N. Lakshminarayan, J. Yi, Effect of valence band offset and surface passivation quality in the silicon heterojunction solar cells, J. Electrochem. Soc. 158 (2011) H1129-H1132.

DOI: 10.1149/2.031111jes

Google Scholar

[6] C. -L. Zhong, R. -H. Yao, K. -W. Geng, An improvement of the capacitance-voltage method to determine the band offsets in a-Si: H/c-Si heterojunctions, IEEE Trans. Electron Devices 61 (2014) 394-399.

DOI: 10.1109/ted.2013.2295459

Google Scholar

[7] T.F. Schulze, C. Leendertz, N. Mingirulli, L. Korte, B. Rech, Impact of Fermi-level dependent defect equilibration on Voc of amorphous/crystalline silicon heterojunction solar cells, Energy Procedia 8 (2011) 282-287.

DOI: 10.1016/j.egypro.2011.06.137

Google Scholar

[8] N.H. Thoan, M. Jivanescu, B.J. O'Sullivan, L. Pantisano, I. Gordon, V.V. Afanas'ev, A. Stesmans, Correlation between interface traps and paramagnetic defects in c-Si/a-Si: H heterojunctions, Appl. Phys. Lett. 100 (2012) 142101/1-3.

DOI: 10.1063/1.3698386

Google Scholar

[9] S. De Wolf, C. Ballif, M. Kondo, Kinetics of a-Si: H bulk defect and a-Si: H/c-Si interface-state reduction, Phys. Rev. B 85 (2012) 113302/1-4.

Google Scholar

[10] B.M. George, J. Behrends, A. Schnegg, T.F. Schulze, M. Fehr, L. Korte, B. Rech, K. Lips, M. Rohrmüller, E. Rauls, W.G. Schmidt, U. Gerstmann, Atomic structure of interface states in silicon heterojunction solar cells, Phys. Rev. Lett. 110 (2013).

DOI: 10.1103/physrevlett.110.136803

Google Scholar

[11] S. Olibet, E. Vallat-Sauvain, C. Ballif, Model for a-Si: H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds. Phys. Rev. B 76 (2007) 035326/1-14.

DOI: 10.1103/physrevb.76.035326

Google Scholar

[12] S. De Wolf, S. Olibet, C. Ballif, Stretched-exponential a-Si: H/c-Si interface recombination decay, Appl. Phys. Lett. 93 (2008) 032101/1-3.

DOI: 10.1063/1.2956668

Google Scholar

[13] C. Leendertz, R. Stangl, T.F. Schulze, M. Schmidt, L. Korte, A recombination model for a-Si: H/c-Si heterostructures, Phys. Stat. Sol. C 7 (2010) 1005-1010.

DOI: 10.1002/pssc.200982698

Google Scholar

[14] N.H. Thoan, K. Keunen, V.V. Afasas'ev, A. Stesmans, Interface state energy distribution and Pb defects at Si(110)/SiO2 interface: Comparison to (111) and (100) silicon orientations. J. Appl. Phys. 109 (2011) 013710/1-6.

DOI: 10.1063/1.3527909

Google Scholar

[15] R.A. Street, J. Zesch, M.J. Thompson, Effects of doping on transport and deep trapping in hydrogenated amorphous silicon, Appl. Phys. Lett. 43 (1983) 672-674.

DOI: 10.1063/1.94441

Google Scholar

[16] E. Simoen, V. Ferro, B.J. O'Sullivan, Deep-level transient spectroscopy of Al/a-Si: H/c-Si structures for heterojunction solar cell applications. J. Appl. Phys. 116 (2014) 234501/1-8.

DOI: 10.1063/1.4904082

Google Scholar

[17] L. Dobaczewski, S. Bernardini, P. Kruszewski, P.K. Hurley, V.P. Markevich, I.D. Hawkins, A.R. Peaker, Energy state distributions of the Pb centers at the (100), (110), and (111) Si/SiO2 interfaces investigated by Laplace deep level transient spectroscopy, Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2939001

Google Scholar

[18] E. Simoen, C. Gong, N.E. Posthuma, E. Van Kerschaever, J. Poortmans, R. Mertens, A DLTS study of SiO2 and SiO2/SiNx surface passivation of silicon, J. Electrochem. Soc. 158 (2011) H612-H617.

DOI: 10.1149/1.3568952

Google Scholar

[19] P. van Staa, H. Rombach, R. Kassing, Time-dependent response of interface states in indium phosphide metal-insulator-semiconductor capacitors investigated with constant-capacitance deep-level transient spectroscopy, J. Appl. Phys. 54 (1983).

DOI: 10.1063/1.332582

Google Scholar

[20] H. Lakhdari, D. Vuillaume, J.C. Bourgoin, Spatial and energetic distribution of Si-SiO2 near-interface states, Phys. Rev. B 38 (1988) 13124-13132.

DOI: 10.1103/physrevb.38.13124

Google Scholar

[21] R.S. Crandall, Trap spectroscopy of a-Si: H diodes using transient current techniques, J. Electron. Mater. 9 (1980) 713-726.

Google Scholar