Kinetic Model of Precipitate Growth during Phase Separation in Metastable Binary Solid Solutions

Article Preview

Abstract:

In this paper, the kinetics of precipitate growth in metastable binary solid solutions is analyzed considering two mechanisms: (i) diffusion of the one component from the bulk of composition matrix and its incorporation in the precipitate, and (ii) emission and outdiffusion of the second component from the interface of precipitate with surrounding matrix. A kinetic model is proposed that enables a description of these both mechanisms in a unique way. Using this model, the mechanism of oxygen emission and outdiffusion from the interface of Si precipitates with the silicon oxide surrounding is confirmed to determine the phase separation kinetics upon high temperature annealing nonstoichiometric silicon oxide films.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

196-202

Citation:

Online since:

October 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. A. Nesbit, Appl. Phys. Lett. 46 (1985) 38–40.

Google Scholar

[2] P. H. Mayrhofer, D. Music, and J. M. Schneider, Appl. Phys. Lett. 88 (2006) 071922.

Google Scholar

[3] V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaria, M. Varela, S. J. Pennycook, M. Garcia-Hernandez, and J. L. Martinez, J. Phys. Chem. Sol. 67 (2006) 472–475.

DOI: 10.1016/j.jpcs.2005.10.022

Google Scholar

[4] K. C. Russel and F. A. Garner, Mettalurgical and Materials Trans. A 23 (1992) 1963–(1976).

Google Scholar

[5] R. Mauri, R. Shinnar, and G. Triantafyllou, Phys. Rev. E 53 (1996) 2613–2623.

Google Scholar

[6] A. Sarikov, V. Litovchenko, I. Lisovskyy, I. Maidanchuk, and S. Zlobin, Appl. Phys. Lett. 91 (2007) 133109.

Google Scholar

[7] V. A. Dan'ko, I. Z. Indutnyi, V. S. Lysenko, I. Yu. Maidanchuk, V. I. Min'ko, A. N. Nazarov, A. S. Tkachenko, and P. E. Shepelyavyi, Semiconductors 39 (2005) 1197–1203.

Google Scholar

[8] C. del Cañizo and A. Luque, J. Electrochem. Soc. 147 (2000) 2685–2692.

Google Scholar

[9] S. V. Bulyarskii, V. V. Svetukhin, and O. V. Prikhod'ko, Semiconductors 33 (1999) 1157–1162.

Google Scholar

[10] M. V. Sorokin and A. E. Volkov, Phys. Rev. E 72 (2005) 051603.

Google Scholar

[11] D. Yu, S. Lee, and G. S. Hwang, J. Appl. Phys. 102 (2007) 084309.

Google Scholar

[12] N. Wang, Y. Cai, and R. Q. Zhang, Mater. Sci. Eng. R 60 (2008) 1–51.

Google Scholar

[13] T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, and S. Hasegawa, J. Appl. Phys. 83 (1998) 2228–2234.

Google Scholar

[14] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, and H. Hofmeister, J. Appl. Phys. 92 (2002) 4678–4683.

DOI: 10.1063/1.1504176

Google Scholar