Capacitance Transient Spectroscopy Measurements on High-k Metal Gate Field Effect Transistors Fabricated Using 28nm Technology Node

Article Preview

Abstract:

Fast progress in nanometer-node high-k metal gate (HKMG) technology requires the development of versatile and detailed characterization methods for semiconductor / dielectric / metal stacks and interfaces between them. Complexity of the advanced fabrication processes does not allow preparation of model samples with dimensions used in standard laboratory measurements. In this report we apply capacitance transient spectroscopy measurements for the characterization of HKMG field effect transistors (FET) fabricated in the standard 28 nm node technology. Measurements were performed on n-FET devices. The devices were characterized in the as-fabricated stage, after application of electrical stress and after fluorine implantation introduced to passivate the interface carrier traps. Our results show good correspondence with those obtained by other characterization methods and supply detailed information on the energy distribution of the interface trap density in the system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

459-465

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. -H. Tseng, P. J. Tobin, S. Kalpat, J. K. Schaeffer, M. E. Ramón, L. R. C. Fonseca, Z. X. Jiang, R. I. Hegde, D. H. Triyoso, and S. Semavedam, IEEE Trans. Electron Devices 54 (2007) 3267-3275.

DOI: 10.1109/ted.2007.908897

Google Scholar

[2] W. C. Wu, C. -S. Lai, T. -M. Wang, J. -C. Wang, C. W. Hsu, M. W. Ma, W. -C. Lo, and T. S. Chao, IEEE Trans. Electron Devices 55 (2008) 1639-1646.

Google Scholar

[3] D. V. Lang, J. Appl. Phys. 45 (1974) 3023-3032.

Google Scholar

[4] M. Schulz and N. M. Johnson, Appl. Phys. Lett. 31 (1977) 622-625.

Google Scholar

[5] M. Schulz and N.M. Johnson, Sol. St. Commun. 25 (1978) 481-484.

Google Scholar

[6] K. Yamasaki, M. Yoshida, and T. Sugano, Jap. J. Appl. Phys. 113 (1979) 113-122.

Google Scholar

[7] E. Kamieniecki, N. Gomma, A. Kloc, and R. Nitecki, J. Vac. Sci. Technol. 18 (1981) 883-887.

Google Scholar

[8] N. M. Johnson, J. Vac. Sci. Technol. 21 (1982) 303-314.

Google Scholar

[9] R. Beyer, H. Burghardt, I. Thurzo, D.R.T. Zahn, T. Geßner, Sol. St. Electron. 44 (2000) 1463-1470.

Google Scholar

[10] H. García, S. Dueñas, H. Castán, A. Gómez, L. Bailón, M. Toledano-Luque, A. del Prado, I. Mártil, and G. González-Díaz, J. Appl. Phys. 104 (2008) 094107 (7).

DOI: 10.1063/1.3013441

Google Scholar

[11] H. Castán, S. Dueñas, H. García, A. Gómez, L. Bailón, M. Toledano-Luque, A. del Prado, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107 (2010) 114104 (5).

DOI: 10.1063/1.3391181

Google Scholar

[12] T. Mchedlidze and M. Kittler , J. Appl. Phys. 111 (2012) 053706 (7).

Google Scholar

[13] T. Mchedlidze and J. Weber, Phys. Status Solidi B 251 (2014) 1608.

Google Scholar

[14] T. Mchedlidze and J. Weber, Phys. Status Solidi RRL 9 (2015) 108-110.

Google Scholar

[15] M. Drescher, A. Naumann, J. Sundqvist, E. Erben, C. Grass, M. Trentzsch, F. Lazarevic, R. Leitsmann, and P. Plaenitz , J. Vac. Sci. Technol. B 33 (2015) 022204 (6).

DOI: 10.1116/1.4913947

Google Scholar

[16] L. Dobaczewski, A. R. Peaker, and K. Bonde Nielsen, J. Appl. Phys. 96 (2004) 4689-4728.

Google Scholar

[17] J. L. Autran, B. Balland, and G. Barbottin, Charge pumping techniques: Their use for diagnosis and interface states studies in MOS transistors, in: G. Barbottin and A. Vapaille (Eds. ) Instabilities in Silicon Devices, Elsevier Science Publishers North-Holland, Amsterdam, 1999, Vol. 3, Chap. 6, p.405.

DOI: 10.1016/s1874-5903(99)80012-3

Google Scholar