A New Approach for Calculating the Band Gap of Semiconductors within the Density Functional Method

Article Preview

Abstract:

Within the framework of the density functional theory, the method was developed to calculate the band gap of semiconductors. We have evaluated the band gap for a number of monoatomic and diatomic semiconductors (Sn, Ge, Si, SiC, GaN, C, BN, AlN). The method gives the band gap of almost experimental accuracy. An important point is the fact that the developed method can be used to calculate both localized states (energy deep levels of defects in crystal), and electronic properties of nanostructures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

434-439

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xiao Zheng, Aron J. Cohen, Paula Mori-Sa´nchez, Xiangqian Hu, and Weitao Yang, Improving Band Gap Prediction in Density Functional Theory from Molecules to Solids, Phys. Rev. Lett. 107 (2011) 026403-(1–4).

DOI: 10.1103/physrevlett.107.026403

Google Scholar

[2] L. J. Sham, M. Schlüter, Density-Functional Theory of the Energy Gap, Phys. Rev. Lett. 51 (1983) 1888-1890.

DOI: 10.1103/physrevlett.51.1888

Google Scholar

[3] Paula Mori-Sánchez, Aron J. Cohen, Weitao Yang, Localization and Delocalization Errors in Density Functional Theory and Implications for Band-Gap Prediction, Phys. Rev. Lett. 100 (2008) 146401-(1–4).

DOI: 10.1103/physrevlett.100.146401

Google Scholar

[4] R. W. Godby, M. Schlüter, L. J. Sham, Quasiparticle energies in GaAs and AlAs, Phys. Rev. B 35 (1987) 4170-4171(R).

DOI: 10.1103/physrevb.35.4170

Google Scholar

[5] M. K. Y. Chan and G. Ceder, Efficient Band Gap Prediction for Solids, Phys. Rev. Lett. 105 (2010) 196403-(1-3).

Google Scholar

[6] E. Runge, E. K. U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett. 52 (1984) 997 - 1000.

DOI: 10.1103/physrevlett.52.997

Google Scholar

[7] M. Städele, M. Moukara, J. A. Majewski, P. Vogl, and A. Görling, Exact exchange Kohn-Sham formalism applied to semiconductors, Phys. Rev. B 59 (1999) 10031 - 10042.

DOI: 10.1103/physrevb.59.10031

Google Scholar

[8] F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102 (2009) 226401-(1-4).

DOI: 10.1103/physrevlett.102.226401

Google Scholar

[9] L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Phys. Rev. 139 (1965) 796 - 823.

DOI: 10.1103/physrev.139.a796

Google Scholar

[10] J. A. Camargo-Mart´ınez, R. Baquero, Performance of the modified Becke-Johnson potential for semiconductors, Phys. Rev. B 86 (2012) 195106-(1-8).

DOI: 10.1103/physrevb.86.195106

Google Scholar

[11] W. Kohn, Electronic structure of matter—wave functions and density functionals, Rev. Mordern Phys. 71 (1999) 1253 - 1266.

DOI: 10.1103/revmodphys.71.1253

Google Scholar

[12] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. 98 (1994). 11623–11627.

DOI: 10.1021/j100096a001

Google Scholar