Influence of Composition of Aqueous Electrolytes on Anisotropy of Porous Layer Formation Rate in Heavily Doped Silicon

Article Preview

Abstract:

Concentration dependence of the pore formation rate in silicon under electrochemical anodization has been studied for different crystallographic directions. It was found that, for materials with doping levels NB=2·1019 (p++) cm-3 and NB=2.5·1017 cm-3 (p+), the propagation rates of the porous front grow with increasing concentration of hydrofluoric acid in aqueous electrolytes for all the crystallographic directions, whereas the anisotropy of the pore formation rate becomes weaker. For the material with NB=2.5·1017 cm-3, the direction <111> remains the predominant direction in which the porous layer is formed for all the electrolyte compositions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

408-413

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. T. Canham, Bioactive silicon structure fabrication through nanoetching techniques, Advanced Materials. Vol. 7, № 12 (1995) 1033-1037.

DOI: 10.1002/adma.19950071215

Google Scholar

[2] E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B. K. Price, M. M. -C. Cheng, P. Decuzzi, J. M. Tour, F. Robertson, M. Ferrari, Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications , Nature Nanotechnology. Vol. 3, № 3 (2008).

DOI: 10.1038/nnano.2008.34

Google Scholar

[3] J. H. Selj, A. Thogersen, S. E. Foss, E. S. Marstein, Optimization of multilayer porous silicon antireflection coatings for silicon solar cells, Journal of Applied Physics. Vol. 107, № 7 (2010).

DOI: 10.1063/1.3353843

Google Scholar

[4] R. Brendel, Thin-film crystalline silicon mini-modules using porous Si for layer transfer, Solar Energy. Vol. 77, № 6 (2004) 969-982.

DOI: 10.1016/j.solener.2004.08.011

Google Scholar

[5] E. V. Astrova, Y. A. Zharova, V. P. Ulin, G. V. Enicheva, Anisotropy of porous silicon formation rate in p-Si, Physica Status Solidi a-Applications and Materials Science. Vol. 210, № 4 (2013) 723-727.

DOI: 10.1002/pssa.201200472

Google Scholar

[6] E. V. Astrova, Y. A. Zharova, Wagon-wheel, mask as a tool to study anisotropy of porous silicon formation rate, Nanoscale Research Letters. Vol. 7 (2012) 1-8.

DOI: 10.1186/1556-276x-7-421

Google Scholar

[7] E. V. Astrova, V. P. Ulin, Y. A. Zharova, I. L. Shul'pina, A. V. Nashchekin, Anisotropy Effects in Electrochemical Etching of p(+)-Si, Journal of the Electrochemical Society. Vol. 159, № 3 (2012) D172-D180.

DOI: 10.1149/2.095203jes

Google Scholar

[8] M. Elwenspoek, H. V. Jansen, Silicon Micromachining, Cambridge University Press, Cambridge, (2004).

Google Scholar

[9] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, A. G. Cullis, An experemental and theoretical-study of the formation and microstructure of porous silicon, J. of Crystal Growth. Vol. 73, № 3 (1985) 622-636.

DOI: 10.1016/0022-0248(85)90029-6

Google Scholar

[10] F. Gaspard, A. Bsiesy, M. Ligeon, F. Muller, R. Herino, Charge-exchange mechanism responsible for p-type silicon dissolution during porous silicon formation, Journal of the Electrochemical Society, Vol. 136, № 10 (1989) 3043-3046.

DOI: 10.1149/1.2096399

Google Scholar

[11] A. Halimaoui, Porous Silicon Formation by Anodization, in L. Canham, Properties of porous silicon, United Kingdom INSPEC, The Institution of Electrical Engineers, London, 1997, pp.12-23.

Google Scholar

[12] V. P. Parkhutik, L. K. Glinenko, V. A. Labunov, kinetics and mechanism of porous layer growth during normal-type silicon anodization in HF solution, Surface Technology, Vol. 20, № 3 (1983) 265-277.

DOI: 10.1016/0376-4583(83)90009-2

Google Scholar

[13] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, J. D. Benjamin, Microstructure and formation mechinism of porous silicon, Applied Physics Letters, Vol. 46, № 1 (1985) 86-88.

DOI: 10.1063/1.95807

Google Scholar

[14] R. Herino, G. Bomchil, K. Barla, C. Bertrand, J. L. Ginoux, porosity and pore-size distributions of porous silicon layers, Journal of the Electrochemical Society, Vol. 134, № 8A (1987) 1994-(2000).

DOI: 10.1149/1.2100805

Google Scholar

[15] V. Lehmann, R. Stengl, A. Luigart, On the morphology and the electrochemical formation mechanism of mesoporous silicon, Materials Science and Engineering B-Solid State Materials for Advanced Technology, Vol. 69 (2000) 11-22.

DOI: 10.1016/s0921-5107(99)00286-x

Google Scholar