Misfit Dislocation Free Epitaxial Growth of SiGe on Compliant Nano-Structured Silicon

Article Preview

Abstract:

The integration of germanium (Ge) into silicon-based microelectronics technologies is currently attracting increasing interest and research effort. One way to realize this without threading and misfit dislocations is the so-called nanoheteroepitaxy approach. We demonstrate that a modified Si nanostructure approach with nanopillars or bars separated by TEOS SiO2 can be used successfully to deposit SiGe dots and lines free of misfit dislocations. It was found that strain relaxation in the pseudomorphically grown SiGe happens fully elastically. These studies are important for the understanding of the behavior of nanostructured Si for the final goal of Ge integration via SiGe buffer.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

402-407

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Jia, R. Woo, Ch. Shulu, L. Yaocheng, P.B. Griffin, J.D. Plummer, IEEE Electron Device Letters 28 (2007) 637-639.

DOI: 10.1109/led.2007.899329

Google Scholar

[2] C.T. Chung, C.W. Chen, J.C. Lin, C.C. Wu, C.H. Chien, G.L. Luo, International Electron De vice Meeting (IEDM) (2012) 16. 4. 1 – 16. 4. 4.

Google Scholar

[3] C.T. DeRose, D.C. Trotter, W.A. Zortman, A.L. Starbuck, M. Fisher, M.R. Watts, P.S. Davids, Opt. Express 19 (2011) 24897-24904.

DOI: 10.1364/oe.19.024897

Google Scholar

[4] G. Capellini, C. Reich, S. Guha, Y. Yamamoto, M. Lisker, M. Virgilio, A. Ghrib, M. El Kurdi, P. Boucaud, B. Tillack, T. Schroeder, Optics Express 22 (2014) 399-410.

DOI: 10.1364/oe.22.000399

Google Scholar

[5] M.J. Süess, R. Geiger, R.A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolanek, J. Faist, H. Sigg, Nature Photonics 7 (2013) 466-472.

DOI: 10.1038/nphoton.2013.67

Google Scholar

[6] S. Gupta, V. Moroz, L. Smith, Q. Lu Q, K. C. Saraswat, IEEE Transactions on Electron Devices 61 (2014) 1222-1230.

Google Scholar

[7] D. Zubia, S.D. Hersee, J. Appl. Phys. 85 (1999) 6492-6496.

Google Scholar

[8] P. Zaumseil, Y. Yamamoto, J. Bauer, M.A. Schubert, J. Matejova, G. Kozlowski, T. Schroeder, B. Tillack, Thin Solid Films 520 (2012) 3240-3244.

DOI: 10.1016/j.tsf.2011.10.178

Google Scholar

[9] P. Zaumseil, G. Kozlowski, Y. Yamamoto, M.A. Schubert, T. Schroeder, J. Appl. Cryst. 46 (2013) 868-873.

Google Scholar

[10] F. Montalenti, M. Salvalaglio, A. Marzegalli, P. Zaumseil, G. Capellini, T.U. Schülli, M.A. Schubert, Y. Yamamoto, B. Tillack, T. Schroeder, Phys. Rev. B 89 (2014) 014101-014107.

DOI: 10.1103/physrevb.89.014101

Google Scholar

[11] P. Zaumseil, Y. Yamamoto, M.A. Schubert, G. Capellini, O. Skibitzki, M. Zöllner, T. Schroeder: submitted to Nanotechnology (2015).

Google Scholar