Defect Formation in Ion-Implanted Si - Approach to Controlled Semiconductor Optical Properties

Article Preview

Abstract:

For specific modification of the fundamental optical and photoelectrical properties of silicon transparent for wavelengths beyond 1.1μm, boron ions have been implanted into n-type wafers at doses of 1 х 1013 cm-2–1 х 1015 cm-2 followed by annealing at 900 °C and 1000 °C (20 min). The IR reflection spectra, Raman spectroscopy and scanning electron microscopy data have been compared with the photosensitivity spectra (1.4–2.2 μm) and with the integrated photoresponse in the IR (1.0–4.1 μm) and UV (0.25–0.4 μm) regions. These studies allow for materials engineering to obtain new data on the influence of defect formation on the optical properties of the material and to evaluate the technological conditions for practical application of the modified material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

374-379

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.G. Mil'vidskii, V.V. Chaldyshev, Nanoscale atomic clusters in semiconductors as a new approach to formation of material properties, Fiz. Tekhnika Poluprov. 32 (1998) 513.

Google Scholar

[2] S. Eichler, J. Gebauer, F. Börner, A. Polity, R. Krause-Rehberg, E. Wendler, B. Weber, W. Wesch, H. Börner, Defects in silicon after B+implantation: A study using a positron-beam techniques, Rutherford backscattering, secondary neutral mass-spectroscopy. Phys. Rev. B 56 (1997).

DOI: 10.1103/physrevb.56.1393

Google Scholar

[3] A. Usami, M. Katayama, J. Tokuda, T. Wada, Diode characteristics and residual deep-level defects of p+–n abrupt junctions fabricated by rapid thermal annealing of boron implanted silicon, Semicond. Sci. Technol. 2 (1987) 83.

DOI: 10.1088/0268-1242/2/2/003

Google Scholar

[4] N.A. Sobolev, A.M. Emelianov, E.I. Shek, V.I. Vdovin, Influence of post-implantation annealing on the properties of silicon light-emitting diodes obtained by boron implantation in n-Si, Physika Tverd. Tela 46 (2004) 39.

DOI: 10.1134/1.1641916

Google Scholar

[5] A.R. Cheladinski, Ph. Ph. Komarov, Defect-impurity engineering in implanted silicon. Uspekhi Fizicheskikh Nauk, 173, (2003) 813.

DOI: 10.3367/ufnr.0173.200308b.0813

Google Scholar

[6] S.L. Libertino, A. La Magna, Damage formation and evolution in ion-implanted crystalline Si, in H. Bernas (Ed. ), Materials Science with ion beams, Springer, Heidelberg, 2010, pp.147-204.

DOI: 10.1007/978-3-540-88789-8_6

Google Scholar

[7] Wai Lek Ng., M.A. Lourenço, R.M. Gwilliam, S. Ledain, G. Shao, K.P. Homewood, An efficient room-temperature silicon-based light-emitting diode, J. Nature, 410 (2001) 1036.

DOI: 10.1038/35065571

Google Scholar

[8] N.P. Khuchua, N.D. Dolidze, N.G. Gapishvili, R.G. Gulyaev, Z.V. Jibuti, R.G. Melkadze, M.G. Tigishvili, Technology of semiconductor materials sensitive to different regions of the electromagnetic radiation spectrum, Nanotechnology Perceptions 10 (2014).

DOI: 10.4024/n09kh14a.ntp.010.02

Google Scholar

[9] M.G. Tigishvili, N.P. Khuchua, R.G. Melkadze, N.D. Dolidze, N.G. Gapishvili, Z.V. Jibuti, G. Dovbeshko, V. Romanyuk, Semiconductor material with new optical properties for infrared and ultraviolet photodetectors, 2nd International Conference Modern Technologies and Methods of Inorganic Materials Science, 20-24 April (2015).

DOI: 10.4028/www.scientific.net/ssp.242.374

Google Scholar

[10] A.N. Mikhailov, A.I. Belov, D.S. Korolev, A.O. Timofeeva, V.K. Vasilyev, A.N. Shushunov, A.I. Bobrov, D.A. Pavlov, D.I. Tetel'baum, E.I. Shek, Influence of ion doping on photoluminescence in Si associated with dislocations formed by Di ion implantation, Fiz. Tekhnika Poluprov. 48 (2014).

DOI: 10.1134/s1063782614020183

Google Scholar

[11] M. Razerghi, A. Rogalski, Semiconductor ultraviolet detectors, Applied Physics Reviews 10 (1996) 7434-7470.

Google Scholar