Defect Composition in Acceptor Doped ZnO Quantum Structures

Article Preview

Abstract:

We investigated defect composition in ZnO quantum structures – quantum wells and nanowires doped with Ag impurity. We investigated the influence of space and dielectric confinement on ionization energies of acceptor and compensation donor centers. These calculations show that in nanowire there is a optimal range of radius where the creation of ionized donors compensating hole conductivity, and consequently, improvement of hole conductivity, is possible to suppress.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

391-395

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. W. Zou, X. D. Yan, J. Han, R. Q. Chen, W. Gao, and J. Metson, Study of a nitrogen-doped ZnO film with synchrotron radiation, Appl. Phys. Lett. 94 (2009) 171903.

DOI: 10.1063/1.3125255

Google Scholar

[2] S. Limpijumnong, X. Li, S-H. Wei and S. B. Zhang, Substitutional diatomic molecules NO, NC, CO, N2, and O2:  Their vibrational frequencies and effects on p  doping of ZnO, Appl. Phys.

DOI: 10.1063/1.1931823

Google Scholar

[3] X. Tang, G. Li, and Sh. Zhou, Ultraviolet electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires, Nano Lett. 13(2013) 5046-5050.

DOI: 10.1021/nl401941g

Google Scholar

[4] H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H.W. Chang, and S. Y. Lee, Structural, electrical, and optical properties of p -type ZnO thin films with Ag dopant, Appl. Phys. Lett. 88 (2006)202108.

DOI: 10.1063/1.2203952

Google Scholar

[5] Y. Zhang, Z. Zhang, B. Lin, Zh. Fu, and J. Xu, Effects of Ag Doping on the Photoluminescence of ZnO Films Grown on Si Substrates, J. Phys. Chem. B 109 (2005) 19200-19203.

DOI: 10.1021/jp0538058

Google Scholar

[6] M. A. Thomas, W. W. Sun, and J. B. Cui, Mechanism of Ag Doping in ZnO Nanowires by Electrodeposition: Experimental and Theoretical Insights, J. Phys. Chem. C 116, (2012) 6383.

DOI: 10.1021/jp2107457

Google Scholar

[7] Y. Li, X. Zhao, and W. Fan, Structural, Electronic, and Optical Properties of Ag-Doped ZnO Nanowires: First Principles Study, J. Phys. Chem. C 115 (2011) 3552-3557.

DOI: 10.1021/jp1098816

Google Scholar

[8] R. S. Zeferino, M. B. Flores, and U. Pal, Photoluminescence and Raman Scattering in Ag-doped ZnO Nanoparticles, J. Appl. Phys. 109 (2011) 014308.

DOI: 10.1063/1.3530631

Google Scholar

[9] Y. Yan, M. M. Al-Jassim, and S. H. Wei, Doping of ZnO by group-IB elementsAppl. Phys. Lett. 89 (2006)181912.

DOI: 10.1063/1.2378404

Google Scholar

[10] O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, and E. Kaminska, Theory of dopingproperties of Ag acceptors in ZnO, Phys. Rev. B 80(2009) 245212.

DOI: 10.1103/physrevb.80.245212

Google Scholar

[11] A. Shik, Excitons and impurity centers in thin wires and in porous silicon, J. Appl. Phys. 74 (1993) 2951-2953.

DOI: 10.1063/1.354601

Google Scholar

[12] J. Giblin, F. Vietmeyer, M. P. McDonald, and M. Kuno, Single Nanowire Extinction Spectroscopy, Nano Lett. 11 (2011) 3307-3311.

DOI: 10.1021/nl201679d

Google Scholar

[13] F. A. Kröger, The Chemistry of Imperfect Crystals, North-HollandPublishing Company, Amsterdam, (1964).

Google Scholar

[14] A. N. Gruzintsov, V. T. Volkov, I. I. Khodos, T. V. Nikoforova, and M. N. Loval'chuk, Luminescent Properties of ZnO Films Doped with Group-IB Acceptors, Russ. Microelectron. 31 (2002) 200-205.

Google Scholar

[15] A. M. Gurvich, Introduction to Physical Chemistry of CrystalPhosphors , Vysshaya Shkola, Moscow, 1982 (inRussian).

Google Scholar

[16] J. A. Portier, H. S. Hilal, I. Saadeddin, S. J. Hwang, M. A. Subramanuan, and G. Gampet, Thermodynamic correlations and band gap calculations in metal oxides, Prog. Solid State Chem. 32 (2004) 207-(2017).

DOI: 10.1016/j.progsolidstchem.2005.05.001

Google Scholar