[1]
M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W.J. Parak, T. Hyeon, B.A. Korgel, C.B. Murray, W. Heiss, Prospects of Nanoscience with Nanocrystals, ACS Nano, 9 (2015).
DOI: 10.1021/nn506223h
Google Scholar
[2]
Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature, 437 (2005) 664-670.
DOI: 10.1038/nature04165
Google Scholar
[3]
Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, J. Phys. Chem., 95 (1991) 525-532.
DOI: 10.1021/j100155a009
Google Scholar
[4]
H. Weller, Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules, Angew. Chem. Int. Ed., 32 (1993) 41-53.
DOI: 10.1002/anie.199300411
Google Scholar
[5]
E.H. Sargent, Colloidal quantum dot solar cells, Nat Photon, 6 (2013) 133-135.
Google Scholar
[6]
J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nat Mater, 10 (2013).
DOI: 10.1038/nmat3118
Google Scholar
[7]
Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Bright, multicoloured light-emitting diodes based on quantum dots, Nat. Photon, 1 (2007) 717-722.
DOI: 10.1038/nphoton.2007.226
Google Scholar
[8]
X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, 307 (2005) 538-544.
DOI: 10.1126/science.1104274
Google Scholar
[9]
X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature, 404 (2000) 59-61.
DOI: 10.1038/35003535
Google Scholar
[10]
X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: Focusing, of Size Distributions, J. Am. Chem. Soc., 120 (1998) 5343-5344.
DOI: 10.1021/ja9805425
Google Scholar
[11]
F.W. Wise, Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement, Acc. Chem. Res., 33 (2000) 773-780.
DOI: 10.1021/ar970220q
Google Scholar
[12]
J.G.C. Veinot, Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals, Chem. Commun. , (2006) 4160-4168.
DOI: 10.1039/b607476f
Google Scholar
[13]
X. Cheng, S.B. Lowe, P.J. Reece, J.J. Gooding, Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications, Chem. Soc. Rev., 43 (2014) 2680-2700.
DOI: 10.1039/c3cs60353a
Google Scholar
[14]
B. F. P. McVey, R. D. Tilley, Solution Synthesis, Optical Properties, and Bioimaging Applications of Silicon Nanocrystals, Acc. Chem. Res., 47 (2014) 3045-3051.
DOI: 10.1021/ar500215v
Google Scholar
[15]
C.M. Hessel, E.J. Henderson, J.G.C. Veinot, Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles, Chem. Mater., 18 (2006) 6139-6146.
DOI: 10.1021/cm0602803
Google Scholar
[16]
E.J. Henderson, J.A. Kelly, J.G.C. Veinot, Influence of HSiO1. 5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals, Chem. Mater., 21 (2009) 5426-5434.
DOI: 10.1021/cm902028q
Google Scholar
[17]
J.A. Kelly, J.G.C. Veinot, An Investigation into Near-UV Hydrosilylation of Freestanding Silicon Nanocrystals, ACS Nano, 4 (2010) 4645-4656.
DOI: 10.1021/nn101022b
Google Scholar
[18]
J.A. Kelly, A.M. Shukaliak, M.D. Fleischauer, J.G.C. Veinot, Size-Dependent Reactivity in Hydrosilylation of Silicon Nanocrystals, J. Am. Chem. Soc., 133 (2011) 9564-9571.
DOI: 10.1021/ja2025189
Google Scholar
[19]
Z. Yang, M. Iqbal, A.R. Dobbie, J.G.C. Veinot, Surface Induced Alkene Oligomerization: Does Thermal Hydrosilylation Really Lead to Monolayer Protected Silicon Nanocrystals?, J. Am. Chem. Soc., (2013).
DOI: 10.1021/ja409657y
Google Scholar
[20]
T.K. Purkait, M. Iqbal, M.H. Wahl, K. Gottschling, C.M. Gonzalez, M.A. Islam, J.G.C. Veinot, Borane-Catalyzed Room-Temperature Hydrosilylation of Alkenes/Alkynes on Silicon Nanocrystal Surfaces, J. Am. Chem. Soc., 136 (2014) 17914-17917.
DOI: 10.1021/ja510120e
Google Scholar
[21]
Z. Yang, A.R. Dobbie, J.G.C. Veinot, A Convenient Method for Preparing Alkyl-Functionalized Silicon Nanocubes J. Am. Chem. Soc., 134 (2012) 13958-13961.
DOI: 10.1021/ja3061497
Google Scholar
[22]
Z. Yang, A.R. Dobbie, J.G.C. Veinot, Shape evolution of faceted silicon nanocrystals upon thermal annealing in an oxide matrix, MRS Online Proc. Libr., 1536 (2013) opl. 2013. 2890, 2016 pp.
DOI: 10.1557/opl.2013.890
Google Scholar
[23]
J.M. Buriak, Organometallic Chemistry on Silicon and Germanium Surfaces, Chemical Reviews, 102 (2002) 1271-1308.
DOI: 10.1021/cr000064s
Google Scholar
[24]
I.M.D. Höhlein, J. Kehrle, T. Helbich, Z. Yang, J.G.C. Veinot, B. Rieger, Diazonium Salts as Grafting Agents and Efficient Radical-Hydrosilylation Initiators for Freestanding Photoluminescent Silicon Nanocrystals, Chem. Eur. J., 20 (2014).
DOI: 10.14293/p2199-8442.1.sop-chem.p7jmrd.v1
Google Scholar
[25]
J.M. Buriak, M.P. Stewart, T.W. Geders, M.J. Allen, H.C. Choi, J. Smith, D. Raftery, L.T. Canham, Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces, J. Am. Chem. Soc., 121 (1999) 11491-11502.
DOI: 10.1021/ja992188w
Google Scholar
[26]
J.H. Song, M.J. Sailor, Functionalization of Nanocrystalline Porous Silicon Surfaces with Aryllithium Reagents: Formation of Silicon−Carbon Bonds by Cleavage of Silicon−Silicon Bonds, J. Am. Chem. Soc., 120 (1998) 2376-2381.
DOI: 10.1021/ja9734511
Google Scholar
[27]
N.Y. Kim, P.E. Laibinis, Derivatization of Porous Silicon by Grignard Reagents at Room Temperature, J. Am. Chem. Soc., 120 (1998) 4516-4517.
DOI: 10.1021/ja9712231
Google Scholar
[28]
I.M.D. Höhlein, A. Angı, R. Sinelnikov, J.G.C. Veinot, B. Rieger, Functionalization of Hydride-Terminated Photoluminescent Silicon Nanocrystals with Organolithium Reagents, Chem. Eur. J., 21 (2015) 2755-2758.
DOI: 10.1002/chem.201405555
Google Scholar
[29]
M. Dasog, K. Bader, J. G. C. Veinot, Influence of Halides on Optical Properties of Si Quantum Dots, Chem. Mater., 27 (2015) 1153-1156.
DOI: 10.1021/acs.chemmater.5b00115
Google Scholar
[30]
L. M. Wheeler, N. R. Neale, U. R. Kortshagen, Nat. Commun., 4 (2013) No. 2197.
Google Scholar
[31]
M. A. Islam, T.K. Purkait, J. G. C. Veinot, Chloride Surface Terminated Silicon Nanocrystal Mediated Synthesis of Poly(3-hexylthiophene), J. Am. Chem. Soc., 136 (2014) 15130-15133.
DOI: 10.1021/ja5075739
Google Scholar
[32]
M. S. Hybertsen, Absorption and Emission of Light in Nano- scale Silicon Structures. Phys. Rev. Lett. 72 (1994) 1514–1517.
DOI: 10.1103/physrevlett.72.1514
Google Scholar
[33]
M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus,; M. P. Singh,; E. Muthuswamy, S. M. Kauzlarich,; R. D. Tilley; J. G. C. Veinot, Chemical Insight Into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals. ACS Nano 7 (2013).
DOI: 10.1021/nn4000644
Google Scholar
[34]
M. Dasog, G. B. De los Reyes, L. V. Titova, F. A. Hegmann, and J. G. C. Veinot, Size vs Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum via Surface Groups ACS Nano 8 (2014), 9636–9648.
DOI: 10.1021/nn504109a
Google Scholar