A Nanoscale Adventure with Silicon: Synthesis, Surface Chemistry, and other Surprises

Article Preview

Abstract:

The preparation and surface chemistry Si quantum dots (SiQDs) are currently an intense focus of research because of their size dependent optical properties and many potential applications. SiQDs offer several advantages over other quantum dots; Si is earth abundant, non-toxic and biocompatible. This account briefly highlights recent advancements made by our research group related to the synthesis, functionalization, surface dependent optical properties and applications of SiQDs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

383-390

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W.J. Parak, T. Hyeon, B.A. Korgel, C.B. Murray, W. Heiss, Prospects of Nanoscience with Nanocrystals, ACS Nano, 9 (2015).

DOI: 10.1021/nn506223h

Google Scholar

[2] Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature, 437 (2005) 664-670.

DOI: 10.1038/nature04165

Google Scholar

[3] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, J. Phys. Chem., 95 (1991) 525-532.

DOI: 10.1021/j100155a009

Google Scholar

[4] H. Weller, Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules, Angew. Chem. Int. Ed., 32 (1993) 41-53.

DOI: 10.1002/anie.199300411

Google Scholar

[5] E.H. Sargent, Colloidal quantum dot solar cells, Nat Photon, 6 (2013) 133-135.

Google Scholar

[6] J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nat Mater, 10 (2013).

DOI: 10.1038/nmat3118

Google Scholar

[7] Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Bright, multicoloured light-emitting diodes based on quantum dots, Nat. Photon, 1 (2007) 717-722.

DOI: 10.1038/nphoton.2007.226

Google Scholar

[8] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, 307 (2005) 538-544.

DOI: 10.1126/science.1104274

Google Scholar

[9] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature, 404 (2000) 59-61.

DOI: 10.1038/35003535

Google Scholar

[10] X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: Focusing, of Size Distributions, J. Am. Chem. Soc., 120 (1998) 5343-5344.

DOI: 10.1021/ja9805425

Google Scholar

[11] F.W. Wise, Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement, Acc. Chem. Res., 33 (2000) 773-780.

DOI: 10.1021/ar970220q

Google Scholar

[12] J.G.C. Veinot, Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals, Chem. Commun. , (2006) 4160-4168.

DOI: 10.1039/b607476f

Google Scholar

[13] X. Cheng, S.B. Lowe, P.J. Reece, J.J. Gooding, Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications, Chem. Soc. Rev., 43 (2014) 2680-2700.

DOI: 10.1039/c3cs60353a

Google Scholar

[14] B. F. P. McVey, R. D. Tilley, Solution Synthesis, Optical Properties, and Bioimaging Applications of Silicon Nanocrystals, Acc. Chem. Res., 47 (2014) 3045-3051.

DOI: 10.1021/ar500215v

Google Scholar

[15] C.M. Hessel, E.J. Henderson, J.G.C. Veinot, Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles, Chem. Mater., 18 (2006) 6139-6146.

DOI: 10.1021/cm0602803

Google Scholar

[16] E.J. Henderson, J.A. Kelly, J.G.C. Veinot, Influence of HSiO1. 5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals, Chem. Mater., 21 (2009) 5426-5434.

DOI: 10.1021/cm902028q

Google Scholar

[17] J.A. Kelly, J.G.C. Veinot, An Investigation into Near-UV Hydrosilylation of Freestanding Silicon Nanocrystals, ACS Nano, 4 (2010) 4645-4656.

DOI: 10.1021/nn101022b

Google Scholar

[18] J.A. Kelly, A.M. Shukaliak, M.D. Fleischauer, J.G.C. Veinot, Size-Dependent Reactivity in Hydrosilylation of Silicon Nanocrystals, J. Am. Chem. Soc., 133 (2011) 9564-9571.

DOI: 10.1021/ja2025189

Google Scholar

[19] Z. Yang, M. Iqbal, A.R. Dobbie, J.G.C. Veinot, Surface Induced Alkene Oligomerization: Does Thermal Hydrosilylation Really Lead to Monolayer Protected Silicon Nanocrystals?, J. Am. Chem. Soc., (2013).

DOI: 10.1021/ja409657y

Google Scholar

[20] T.K. Purkait, M. Iqbal, M.H. Wahl, K. Gottschling, C.M. Gonzalez, M.A. Islam, J.G.C. Veinot, Borane-Catalyzed Room-Temperature Hydrosilylation of Alkenes/Alkynes on Silicon Nanocrystal Surfaces, J. Am. Chem. Soc., 136 (2014) 17914-17917.

DOI: 10.1021/ja510120e

Google Scholar

[21] Z. Yang, A.R. Dobbie, J.G.C. Veinot, A Convenient Method for Preparing Alkyl-Functionalized Silicon Nanocubes J. Am. Chem. Soc., 134 (2012) 13958-13961.

DOI: 10.1021/ja3061497

Google Scholar

[22] Z. Yang, A.R. Dobbie, J.G.C. Veinot, Shape evolution of faceted silicon nanocrystals upon thermal annealing in an oxide matrix, MRS Online Proc. Libr., 1536 (2013) opl. 2013. 2890, 2016 pp.

DOI: 10.1557/opl.2013.890

Google Scholar

[23] J.M. Buriak, Organometallic Chemistry on Silicon and Germanium Surfaces, Chemical Reviews, 102 (2002) 1271-1308.

DOI: 10.1021/cr000064s

Google Scholar

[24] I.M.D. Höhlein, J. Kehrle, T. Helbich, Z. Yang, J.G.C. Veinot, B. Rieger, Diazonium Salts as Grafting Agents and Efficient Radical-Hydrosilylation Initiators for Freestanding Photoluminescent Silicon Nanocrystals, Chem. Eur. J., 20 (2014).

DOI: 10.14293/p2199-8442.1.sop-chem.p7jmrd.v1

Google Scholar

[25] J.M. Buriak, M.P. Stewart, T.W. Geders, M.J. Allen, H.C. Choi, J. Smith, D. Raftery, L.T. Canham, Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces, J. Am. Chem. Soc., 121 (1999) 11491-11502.

DOI: 10.1021/ja992188w

Google Scholar

[26] J.H. Song, M.J. Sailor, Functionalization of Nanocrystalline Porous Silicon Surfaces with Aryllithium Reagents: Formation of Silicon−Carbon Bonds by Cleavage of Silicon−Silicon Bonds, J. Am. Chem. Soc., 120 (1998) 2376-2381.

DOI: 10.1021/ja9734511

Google Scholar

[27] N.Y. Kim, P.E. Laibinis, Derivatization of Porous Silicon by Grignard Reagents at Room Temperature, J. Am. Chem. Soc., 120 (1998) 4516-4517.

DOI: 10.1021/ja9712231

Google Scholar

[28] I.M.D. Höhlein, A. Angı, R. Sinelnikov, J.G.C. Veinot, B. Rieger, Functionalization of Hydride-Terminated Photoluminescent Silicon Nanocrystals with Organolithium Reagents, Chem. Eur. J., 21 (2015) 2755-2758.

DOI: 10.1002/chem.201405555

Google Scholar

[29] M. Dasog, K. Bader, J. G. C. Veinot, Influence of Halides on Optical Properties of Si Quantum Dots, Chem. Mater., 27 (2015) 1153-1156.

DOI: 10.1021/acs.chemmater.5b00115

Google Scholar

[30] L. M. Wheeler, N. R. Neale, U. R. Kortshagen, Nat. Commun., 4 (2013) No. 2197.

Google Scholar

[31] M. A. Islam, T.K. Purkait, J. G. C. Veinot, Chloride Surface Terminated Silicon Nanocrystal Mediated Synthesis of Poly(3-hexylthiophene), J. Am. Chem. Soc., 136 (2014) 15130-15133.

DOI: 10.1021/ja5075739

Google Scholar

[32] M. S. Hybertsen, Absorption and Emission of Light in Nano- scale Silicon Structures. Phys. Rev. Lett. 72 (1994) 1514–1517.

DOI: 10.1103/physrevlett.72.1514

Google Scholar

[33] M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus,; M. P. Singh,; E. Muthuswamy, S. M. Kauzlarich,; R. D. Tilley; J. G. C. Veinot, Chemical Insight Into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals. ACS Nano 7 (2013).

DOI: 10.1021/nn4000644

Google Scholar

[34] M. Dasog, G. B. De los Reyes, L. V. Titova, F. A. Hegmann, and J. G. C. Veinot, Size vs Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum via Surface Groups ACS Nano 8 (2014), 9636–9648.

DOI: 10.1021/nn504109a

Google Scholar