[1]
T. Enoki, T. Ando, Physics and chemistry of graphene: graphene to nanographene, Pan Stanford Publishing Pte Ltd., Singapore, (2013).
Google Scholar
[2]
A.M. Ziatdinov, Nanographites, their compounds and film structures, Russ. Chem. Bull. Int. Ed., 1 (2015) 1-14.
Google Scholar
[3]
G.M. Mikheev, R.G. Zonov, A.N. Obraztsov, A.P. Volkov, Yu.P. Svirko, A nanographite film-based fast response detector for intense laser radiation, Instrum. Exp. Tech. 48(3) (2005) 349-354.
DOI: 10.1007/s10786-005-0062-6
Google Scholar
[4]
A.N. Obraztsov, V.I. Kleshch, E.A. Smolnikova. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source. Beilstein J. Nanotechnol. 4 (2013) 493-500.
DOI: 10.3762/bjnano.4.58
Google Scholar
[5]
S.G. Lebedev, Field effect switching in nano-graphite films, Adv. High Energy Physics 2013 (2013), article ID 612582.
Google Scholar
[6]
A. Serra, A. Buccolieri, E. Filippo, D. Manno, Nanographite assembled films for sensitive NO2 detection, Sensor. Actuat. B-Chem., 161 (2012) 359-365.
DOI: 10.1016/j.snb.2011.10.045
Google Scholar
[7]
Yu.V. Ioni, S.V. Tkachev, N.A. Bulychev, S.P. Gubin, Preparation of finely dispersed nanographite, Inorg. Mater. 47 (2011) 597-603.
DOI: 10.1134/s0020168511060100
Google Scholar
[8]
K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. В 54 (1996) 17954-17961.
DOI: 10.1103/physrevb.54.17954
Google Scholar
[9]
H. Marsh, F. Rodriguez-Reinoso, Activated carbon, Amsterdam: Elsevier, (2006).
Google Scholar
[10]
N.S. Saenko, A.M. Ziatdinov, Multilayer graphene nanoclusters: structure, electronic and magnetic properties, Solid State Phenomena, this volume (2016).
DOI: 10.4028/www.scientific.net/ssp.247.76
Google Scholar
[11]
Yu.M. Nikolenko, A.M. Ziatdinov, Synthesis and characterization of nanographites with chemically modified edges, Russ. J. Inorg. Chem. (Engl. Transl. ) 57(11) (2012) 1436-1442.
DOI: 10.1134/s0036023612110101
Google Scholar
[12]
S.S. Bukalov, L.A. Mikhalitzin, Ua.V. Zubavitchus., L.A. Leytes., Yu.N. Novikov, Investigation of the structure of graphite and other sp2 carbon materials by Raman microscopy and X-ray diffraction, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im D.I. Mendeleeva) I (2006).
Google Scholar
[13]
T. Jawhari, A. Roid and J. Casado, Raman-spectroscopic characterization of some commercially available carbon-black materials, Carbon 33 (1995) 1561-1565.
DOI: 10.1016/0008-6223(95)00117-v
Google Scholar
[14]
F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Phys. Chem. 53 (1970) 1126-1130.
Google Scholar
[15]
Yu.M. Shulga, I.A. Kostanovskyi, V.P. Afanasyev, D.A. Ivanov, D. Stolyarov, E. Polyakova, A.L. Gysev, Experimental study of plasmon losses in graphene foam, ISJAEE 9 (2012) 127-131 (in Russian).
Google Scholar
[16]
Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65 (1996) 1920-(1923).
DOI: 10.1143/jpsj.65.1920
Google Scholar
[17]
K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence, Phys. Rev. В 54 (1996) 17954-17961.
DOI: 10.1103/physrevb.54.17954
Google Scholar
[18]
K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59 (1999) 8271-8282.
DOI: 10.1103/physrevb.59.8271
Google Scholar
[19]
A.M. Ziatdinov, Structure and properties of nanographites and their compounds, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im D.I. Mendeleeva) XLVIII (2004) 5-11 [Mendeleev Chem. J. (Engl. Transl. ) XLVIII (2004) 5-11].
Google Scholar
[20]
Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Scanning tunneling microscopy and spectroscopy studies of graphite edges, Appl. Surf. Sci. 241 (2005) 43-48.
DOI: 10.1016/j.apsusc.2004.09.091
Google Scholar
[21]
Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71 (2005) 193406.
DOI: 10.1103/physrevb.71.193406
Google Scholar
[22]
Z. Klusek, W. Kozlowski, Z. Waqar, S. Datta, J.S. Burnell-Gray, I. V. Makarenko, N. R. Gall, E.V. Rutkov, A. Ya. Tontegode, A.N. Titkov, Local electronic edge states of grapheme layer deposited on Ir(111) surface studied by STM/CITS, Appl. Surf. Sci. 252 (2005).
DOI: 10.1016/j.apsusc.2005.02.083
Google Scholar
[23]
M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, T. Enoki, Vizualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination, Phys. Rev. B 87 (2013) 115427.
DOI: 10.1103/physrevb.87.115427
Google Scholar
[24]
S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki, Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173 (2014) 173-199.
DOI: 10.1039/c4fd00073k
Google Scholar
[25]
X. Zhan, O.V. Yazyev, J. Feng, L. Xie, C. Tao, Y. -C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Experimentally engineering the edge termination of graphene nanoribbons, ACS Nano 7 (2013) 198-202.
DOI: 10.1021/nn303730v
Google Scholar