Nanographite Films: Structure and Properties

Article Preview

Abstract:

Nanographite film structures of different morphology have been grown on various substrates using the activated carbon fibers (ACF) as a source of nanographites. As was revealed from the data of Raman spectroscopy, the fabricated films consisted mainly of the same structural blocks as the initial ACF. Scanning electron microscopy was used to study the films morphology. The presence of lengthy zigzag edges in nanographites, which is prerequisite for their nontrivial electronic structure and magnetic characteristics, has been established. The X-ray photoelectron spectroscopy data show the appearance of expressed maxima in the C1s spectra of the films in the usually observable "diffuse" structure of π→π* shake-up satellites, π and π + σ plasmons.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

17-23

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Enoki, T. Ando, Physics and chemistry of graphene: graphene to nanographene, Pan Stanford Publishing Pte Ltd., Singapore, (2013).

Google Scholar

[2] A.M. Ziatdinov, Nanographites, their compounds and film structures, Russ. Chem. Bull. Int. Ed., 1 (2015) 1-14.

Google Scholar

[3] G.M. Mikheev, R.G. Zonov, A.N. Obraztsov, A.P. Volkov, Yu.P. Svirko, A nanographite film-based fast response detector for intense laser radiation, Instrum. Exp. Tech. 48(3) (2005) 349-354.

DOI: 10.1007/s10786-005-0062-6

Google Scholar

[4] A.N. Obraztsov, V.I. Kleshch, E.A. Smolnikova. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source. Beilstein J. Nanotechnol. 4 (2013) 493-500.

DOI: 10.3762/bjnano.4.58

Google Scholar

[5] S.G. Lebedev, Field effect switching in nano-graphite films, Adv. High Energy Physics 2013 (2013), article ID 612582.

Google Scholar

[6] A. Serra, A. Buccolieri, E. Filippo, D. Manno, Nanographite assembled films for sensitive NO2 detection, Sensor. Actuat. B-Chem., 161 (2012) 359-365.

DOI: 10.1016/j.snb.2011.10.045

Google Scholar

[7] Yu.V. Ioni, S.V. Tkachev, N.A. Bulychev, S.P. Gubin, Preparation of finely dispersed nanographite, Inorg. Mater. 47 (2011) 597-603.

DOI: 10.1134/s0020168511060100

Google Scholar

[8] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. В 54 (1996) 17954-17961.

DOI: 10.1103/physrevb.54.17954

Google Scholar

[9] H. Marsh, F. Rodriguez-Reinoso, Activated carbon, Amsterdam: Elsevier, (2006).

Google Scholar

[10] N.S. Saenko, A.M. Ziatdinov, Multilayer graphene nanoclusters: structure, electronic and magnetic properties, Solid State Phenomena, this volume (2016).

DOI: 10.4028/www.scientific.net/ssp.247.76

Google Scholar

[11] Yu.M. Nikolenko, A.M. Ziatdinov, Synthesis and characterization of nanographites with chemically modified edges, Russ. J. Inorg. Chem. (Engl. Transl. ) 57(11) (2012) 1436-1442.

DOI: 10.1134/s0036023612110101

Google Scholar

[12] S.S. Bukalov, L.A. Mikhalitzin, Ua.V. Zubavitchus., L.A. Leytes., Yu.N. Novikov, Investigation of the structure of graphite and other sp2 carbon materials by Raman microscopy and X-ray diffraction, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im D.I. Mendeleeva) I (2006).

Google Scholar

[13] T. Jawhari, A. Roid and J. Casado, Raman-spectroscopic characterization of some commercially available carbon-black materials, Carbon 33 (1995) 1561-1565.

DOI: 10.1016/0008-6223(95)00117-v

Google Scholar

[14] F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Phys. Chem. 53 (1970) 1126-1130.

Google Scholar

[15] Yu.M. Shulga, I.A. Kostanovskyi, V.P. Afanasyev, D.A. Ivanov, D. Stolyarov, E. Polyakova, A.L. Gysev, Experimental study of plasmon losses in graphene foam, ISJAEE 9 (2012) 127-131 (in Russian).

Google Scholar

[16] Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65 (1996) 1920-(1923).

DOI: 10.1143/jpsj.65.1920

Google Scholar

[17] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence, Phys. Rev. В 54 (1996) 17954-17961.

DOI: 10.1103/physrevb.54.17954

Google Scholar

[18] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59 (1999) 8271-8282.

DOI: 10.1103/physrevb.59.8271

Google Scholar

[19] A.M. Ziatdinov, Structure and properties of nanographites and their compounds, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im D.I. Mendeleeva) XLVIII (2004) 5-11 [Mendeleev Chem. J. (Engl. Transl. ) XLVIII (2004) 5-11].

Google Scholar

[20] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Scanning tunneling microscopy and spectroscopy studies of graphite edges, Appl. Surf. Sci. 241 (2005) 43-48.

DOI: 10.1016/j.apsusc.2004.09.091

Google Scholar

[21] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71 (2005) 193406.

DOI: 10.1103/physrevb.71.193406

Google Scholar

[22] Z. Klusek, W. Kozlowski, Z. Waqar, S. Datta, J.S. Burnell-Gray, I. V. Makarenko, N. R. Gall, E.V. Rutkov, A. Ya. Tontegode, A.N. Titkov, Local electronic edge states of grapheme layer deposited on Ir(111) surface studied by STM/CITS, Appl. Surf. Sci. 252 (2005).

DOI: 10.1016/j.apsusc.2005.02.083

Google Scholar

[23] M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, T. Enoki, Vizualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination, Phys. Rev. B 87 (2013) 115427.

DOI: 10.1103/physrevb.87.115427

Google Scholar

[24] S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki, Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173 (2014) 173-199.

DOI: 10.1039/c4fd00073k

Google Scholar

[25] X. Zhan, O.V. Yazyev, J. Feng, L. Xie, C. Tao, Y. -C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Experimentally engineering the edge termination of graphene nanoribbons, ACS Nano 7 (2013) 198-202.

DOI: 10.1021/nn303730v

Google Scholar