Localized Plasmon Resonances in Gold and Silver Microcones Fabricated Using Single-Pulse Femtosecond Nanoprocessing

Article Preview

Abstract:

In this paper we report on the one-step fabrication of silver and gold conical microstructures using femtosecond single-pulse nanoablation. The lateral and vertical size of the microcones was found to be fully determined by the pulse energy. Using dark-field confocal microspectroscopy technique we observe and measure the resonant light scattering from the individual nanostructures in visible spectral range with the resonant peak position being dependent on the microcone size. This resonant light scattering was attributed to the excitation of the localized surface plasmon modes in the upper part of the microcones, where the main part of the molten materials accumulates and resolidifies during the formation process. The plasmon-mediated EM field enhancement near the microcones was experimentally probed and revealed by means of photoluminescent (PL) microscopy. The averaged 6-fold enhancement of the PL signal from the layer of alkylated europium complex embedded into the organic matrix was experimentally demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

39-46

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, (2010). Plasmonics for extreme light concentration and manipulation, Nat. Mat. 9 (2010) 193-204.

DOI: 10.1038/nmat2630

Google Scholar

[2] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem., Int. Ed. 48 (2009) 60–103.

DOI: 10.1002/anie.200802248

Google Scholar

[3] J. Lian, L. Wang, X. Sun, Q. Yu, R.C. Ewing, Patterning metallic nanostructures by ion-beam-induced dewetting and Rayleigh instability, Nano Lett. 6 (2006)1047.

DOI: 10.1021/nl060492z

Google Scholar

[4] A.A. Kuchmizhak, S.O. Gurbatov, O.B. Vitrik, Yu. N. Kulchin, Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon, Opt. Express 22 (2014) 19149-19158.

DOI: 10.1364/oe.22.019149

Google Scholar

[5] J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, and B.N. Chichkov, Nanotexturing of gold films by femtosecond laser-induced melt dynamics, Appl. Phys. A 81 (2005) 325.

DOI: 10.1007/s00339-005-3212-6

Google Scholar

[6] Y.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, V.I. Emel'yanov, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, Formation of crown-like and related nanostructures on a thin supported gold film irradiated by single diffraction-limited nanosecond laser pulses, Phys. Rev. E 90 (2014).

DOI: 10.1103/physreve.90.023017

Google Scholar

[7] Y.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, A.V. Nepomnyashchii, A.G. Savchuk, A.A. Ionin, S.V. Makarov, Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe, Opt. Lett. 38 (2013).

DOI: 10.1364/ol.38.001452

Google Scholar

[8] V.K. Valev, D. Denkova, X. Zheng, A.I. Kuznetsov, C. Reinhardt, B.N. Chichkov, G. Tsutsumanova, E.J. Osley, V. Petkov, B. De Clercq, A.V. Silhanek, Y. Jeyaram, V. Volskiy, P.A. Warburton, G.A.E. Vandenbosch, S. Russev, O.A. Aktsipetrov, M. Ameloot, V.V. Moshchalkov, and T. Verbiest, Plasmon‐Enhanced Sub‐Wavelength Laser Ablation: Plasmonic Nanojets, Adv. Mater. 24 (2012).

DOI: 10.1002/adma.201103807

Google Scholar

[9] U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses, Nat. Comm. 5 (2014) 3402.

DOI: 10.1038/ncomms4402

Google Scholar

[10] M. Reininghaus, D. Wortmann, Z. Cao, J.M. Hoffmann, T. Taubner, Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses. Opt. Express, 21 (2013) 32176-32183.

DOI: 10.1364/oe.21.032176

Google Scholar

[11] J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett. 7 (1982) 196-198.

DOI: 10.1364/ol.7.000196

Google Scholar

[12] N.A. Inogamov, V.V. Zhakhovskii, V.A. Khokhlov, Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse, Sov. Phys. JETP 120 (2015) 15-48.

DOI: 10.1134/s1063776115010136

Google Scholar

[13] A. I. Kuznetsov, C. Unger, J. Koch, and B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A, 106 (2012) 479-487.

DOI: 10.1007/s00339-011-6747-8

Google Scholar

[14] Yu.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, A.G. Savchuk, A.A. Nepomnyashchii, P.A. Danilov, D.A. Zayarnyi, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Rudenko, V.I. Yurovskikh, A.A. Samokhin, Formation of Nanobumps and Nanoholes in Thin Metal Films by Sharply Focused Nanosecond Laser Pulses, Sov. Phys. JETP 119 (2014).

DOI: 10.1134/s1063776114060156

Google Scholar

[15] C. Unger, J. Koch, L. Overmeyer, B.N. Chichkov, Time-resolved studies of femtosecond-laser induced melt dynamics, Opt. Express 20 (2012) 24864-24872.

DOI: 10.1364/oe.20.024864

Google Scholar

[16] G. Bernard, C.H.P. Lupis, The surface tension of liquid silver alloys: Part I. Silver-Gold Alloys, Metall. Trans 2 (1971) 555.

DOI: 10.1007/bf02663348

Google Scholar

[17] I. Egry, G. Lohoefer, G. Jacobs, Surface tension of liquid metals: results from measurements on ground and in space, Phys. Rev. Lett. 75 (1995) 4043.

DOI: 10.1103/physrevlett.75.4043

Google Scholar

[18] Y.P. Meshcheryakov, N.M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation, Appl. Phys. A 82 (2006) 363.

DOI: 10.1007/s00339-005-3319-9

Google Scholar

[19] The reflectance of the 50-nm thick gold and silver films was experimentally measured using CW semiconductor laser with the central wavelength of 532 nm irradiated the films under the incidence angle of 2° with respect to the surface normal.

Google Scholar

[20] P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, and G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm, Opt. Comm. 114 (1995) 106-110.

DOI: 10.1016/0030-4018(94)00585-i

Google Scholar

[21] D.S. Ivanov, A.I. Kuznetsov, V.P. Lipp, B. Rethfeld, B.N. Chichkov, M.E. Garcia, W. Schulz, Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment, Appl. Phys. A 111 (2013) 675-687.

DOI: 10.1007/s00339-013-7656-9

Google Scholar

[22] A. Wokaun, H.P. Lutz, A.P. King, , U.P. Wild, R.R. Ernst, Energy transfer in surface enhanced luminescence. J. Chem. Phys., 79 (1983) 509-514.

DOI: 10.1063/1.445550

Google Scholar

[23] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, M. Artemyev, Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett., 2 (2002) 1449-1452.

DOI: 10.1021/nl025819k

Google Scholar