Mg2Si under Pressure: DFT Evolutionary Search Results

Article Preview

Abstract:

Using density function theory (DFT), evolutionary simulations for crystal structure prediction, the most stable compositions of Mg2Si in the pressure range 0–30 GPa were obtained. The DFT results reproduce experimentally observed pressure-induced phase transitions and predict a new high-pressure structure Cmcm (space group 63).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

9-16

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.O. Folland, Phys. Rev. 158 (1967) 764.

Google Scholar

[2] A. Stel La, A.D. Brothers, R.H. Hopkins, W. Lynch, Phys. Status Solidi b 23 (1967) 697.

Google Scholar

[3] A. Vantomme, J.E. Mahan, G. Langouche, J.P. Becker, M. Van Bael, K. Temst, C. Van Haesendonck, Appl. Phys. Lett. 70 (1997) 1086.

DOI: 10.1063/1.118492

Google Scholar

[4] M. Baleva, G. Zlateva, A. Atanassov, M. Abrashev, E. Goranova, Phys. Rev. B 72 (2005) 115330.

Google Scholar

[5] E.A. Owen, G.D. Preston, Proc. Phys. Soc. 36 (1924) 341.

Google Scholar

[6] P. Cannon, E.T. Conlin, Science 145 (1964) 487.

Google Scholar

[7] J. Hao, B. Zou, P.W. Zhu, C.X. Gao, Y.W. Li, D. Liu, K. Wang, W.W. Lei, Q.L. Cui, G.T. Zou, Solid State Commun. 149 (2009) 689.

Google Scholar

[8] F. Zhu, X. Wu, Sh. Qin, J. Liu, Solid State Commun. 152 (2012) 2160.

Google Scholar

[9] F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji, Solid State Commun. 150 (2010) 620.

Google Scholar

[10] H. Yu, F. Peng, D. Chen, Y.L. Jia, M.L. Liu, B.P. Dong, Physica B 406 (2011) (2070).

Google Scholar

[11] A.R. Oganov and C.W. Glass, J. Chem. Phys. 124 (2006) 244704.

Google Scholar

[12] A.O. Lyakhov, A.R. Oganov, H.T. Stokes, and Q. Zhu, Comp. Phys. Commun. 184 (2013) 1172.

Google Scholar

[13] A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44 (2011) 227.

Google Scholar

[14] A.R. Oganov, Modern Methods of Crystal Structure Prediction. Wiley-VCH., (2010).

Google Scholar

[15] G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.

Google Scholar

[16] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, (1996) 3865.

Google Scholar

[17] S.T. Stokes, D.M. Hatch, B.J. Campbell, Isotropy (2007) http: /stokes. byu. edu/isotropy. html.

Google Scholar

[18] F. Kalarasse, B. Bennecer, J. Phys. Chem. Solids 69 (2008) 1775.

Google Scholar

[19] J. -H. Hao, Z. -G. Guo, Q. -H. Jin, Solid State Commun. 150 (2010) 2299.

Google Scholar

[20] Yu Ben-Hai and Chen Dong, Chin. Phys. B 20 (2011) 030508.

Google Scholar

[21] J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Mater. Sci. Eng. A 281 (2000) 104.

Google Scholar

[22] E. Anastassakis, J.P. Hawranek, Phys. Rev. B 5 (1972) 4003.

Google Scholar

[23] T.I. Dyuzheva, S.S. Kabalkina, F.L. Vereshchagin, Soviet Physics — Crystallography 17 (1973) 705.

Google Scholar

[24] T.I. Dyuzheva, S.S. Kabalkina, F.L. Vereshchagin, Dokl. Akad. Nauk SSSR 228, (1976) 1073.

Google Scholar

[25] K.F. Seifert, Fortsch. Mineral. 45 (1968) 214.

Google Scholar

[26] Information on https: /www. cc. dvo. ru.

Google Scholar

[27] Vl.V. Voevodin, S.A. Zhumatiy, S.I. Sobolev, A.S. Antonov, P.A. Bryzgalov, D.A. Nikitenko, K.S. Stefanov, Vad.V. Voevodin Open Systems J. - Moscow: Open Systems Publ. № 7 (2012) 36.

DOI: 10.1201/9781351036863-12

Google Scholar