Multilayer Graphene Nanoclusters: Structure, Electronic and Magnetic Properties

Article Preview

Abstract:

The data on atomic and electronic structure and some magnetic properties of graphite domains in activated carbon fibers (ACF) are presented. It has been established that graphite domains have nanometer sizes in all three dimensions, and consist of about three turbostratically stacked nanographenes. Such multilayer nanographene clusters (nanographites) are structural blocks of ACF and they are separated from each other by the micropores and/or sp3-amorphous carbon phase. From the data of magnetic methods of investigations, it follows that the density of states at the Fermi energy in nanographites is significantly larger than the value of that parameter in macroscopic graphite, which testifies the existence of edge π-electron states in them.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

76-82

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Dresselhaus, G. Dresselhaus, P.C. Ekland, Science of fullerenes and carbon nanotubes, Academic Press, New York, 1996, 368 p.

Google Scholar

[2] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[3] T. Enoki, T. Ando, Physics and chemistry of graphene: graphene to nanographene, Pan Stanford Publishing Pte Ltd., Singapore, 2013, 476 p.

Google Scholar

[4] H. Marsh, F. Rodriguez-Reinoso, Activated carbon, Elsevier, Amsterdam, 2006, 536 p.

Google Scholar

[5] B.E. Warren, X-ray diffraction in random layer lattices, Phys. Rev. 59 (1941) 693–698.

DOI: 10.1103/physrev.59.693

Google Scholar

[6] H. Fujimoto, Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures, Carbon 41 (2003) 1585–1592.

DOI: 10.1016/s0008-6223(03)00116-7

Google Scholar

[7] K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons, Carbon 30 (1992) 1075-1088.

DOI: 10.1016/0008-6223(92)90139-n

Google Scholar

[8] E.A. Smorgonskaya, R.N. Kyutt, V.B. Shuman, A.M. Danishevskii, S.K. Gordeev, A.V. Grechinskaya, Small-angle X-ray scattering in a carbon–sulfur nanocomposite produced from bulk nanoporous carbon, Phys. Solid State 44 (2002) 2001-(2008).

DOI: 10.1134/1.1514795

Google Scholar

[9] D.I. Svergun, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, J. Appl. Crystallogr. 25 (1992) 495-503.

DOI: 10.1107/s0021889892001663

Google Scholar

[10] F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126-1130.

Google Scholar

[11] A.C. Ferrari, J. M Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[12] R.O. Dillon, J.A. Woollam, V. Katkanant, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films, Phys. Rev. B 29 (1984) 3482-3489.

DOI: 10.1103/physrevb.29.3482

Google Scholar

[13] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (2007) 1276-1290.

DOI: 10.1039/b613962k

Google Scholar

[14] J. Weil, J.R. Bolton, Electron paramagnetic resonance: elementary theory and practical applications, Wiley-Interscience, USA, 2007, 664 p.

Google Scholar

[15] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65 (1996) 1920-(1923).

DOI: 10.1143/jpsj.65.1920

Google Scholar

[16] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54 (1996) 17954-17961.

DOI: 10.1103/physrevb.54.17954

Google Scholar

[17] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59 (1999) 8271-8282.

DOI: 10.1103/physrevb.59.8271

Google Scholar

[18] J. Tian, H. Cao, W. Wu, Q. Yu, Y.P. Chen, Direct imaging of graphene edges: atomic structure and. electronic scattering, Nano Lett. 11 (2011) 3663-3668.

DOI: 10.1021/nl201590f

Google Scholar

[19] M. Yamamoto, S. Obata, K. Saiki, Structure and properties of chemically prepared nanographene islands characterized by scanning tunneling microscopy, Surf. Interface Anal. 42 (2010) 1637-1641.

DOI: 10.1002/sia.3583

Google Scholar

[20] D. Sabramaniam, F. Libisch, Y. Li, C. Pauly, V. Geringer, R. Reiter, T. Mashoff, M. Liebmann, J. Burgdorfer, C. Busse, T. Michely, R. Mazzarello, M. Pratzer, M. Morgenstern, Wave-function mapping of graphene quantum dots with soft confinement, Phys. Rev. Lett. 108 (2012).

DOI: 10.1103/physrevlett.108.046801

Google Scholar

[21] S.K. Hamalainen, Z. Sun, M.P. Boneschanscher, A. Uppstu, M. Ijas, A. Harju, D. Vanmaekelbergh, P. Liljeroth, Quantum confined electronic states in atomically well-defined graphene nanostructures, Phys. Rev. Lett. 107 (2011) 236803.

DOI: 10.1103/physrevlett.107.236803

Google Scholar

[22] G.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielovski, L. Yang, C. -H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics, Science 323 (2009) 1705-1708.

DOI: 10.1126/science.1166999

Google Scholar

[23] M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, T. Enoki, Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination, Phys. Rev. B 87 (2013) 115427.

DOI: 10.1103/physrevb.87.115427

Google Scholar

[24] S. Fujii, M. Ziatdinov, K. Kusakabe, M. Kiguchi, T. Enoki, Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173 (2014) 173-199.

DOI: 10.1039/c4fd00073k

Google Scholar