[1]
D. Yadlovker, S. Berger, Uniform orientation and size of ferroelectric domains, Phys Rev B 71 (2005) 184112-184117.
DOI: 10.1103/physrevb.71.184112
Google Scholar
[2]
N.G. Popravko, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, Structure and Electrical Properties of Nanocomposites with TGS Inclusions, Ferroelectrics 443 (2013) 8-15.
DOI: 10.1080/00150193.2013.778577
Google Scholar
[3]
C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov, S.Y. Sun, D. Michel, W. Böhlmann, Coexistence of melted and ferroelectric states in sodium nitrite within mesoporous sieves, Phys Rev B 72 (2005) 104105-104110.
DOI: 10.1103/physrevb.72.104105
Google Scholar
[4]
C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov, D. Michel, W. Böhlmann, NMR studies of structure and ferroelectricity for Rochelle salt nanoparticles embedded into mesoporous sieves, J Phys: Cond Matter 20 (2008) 215205-215210.
DOI: 10.1088/0953-8984/20/21/215205
Google Scholar
[5]
S.V. Baryshnikov, E.V. Charnaya, A.Y. Milinskiy, E.V. Stukova, C. Tien, D. Michel, Phase transitions in K1-xNaxNO3 embedded into molecular sieves, J Phys: Condens Matter 21 (2009) 325902-325907.
DOI: 10.1088/0953-8984/21/32/325902
Google Scholar
[6]
A. Cizman, T. Marciniszyn, R. Poprawski, Pressure effect on the ferroelectric phase transition in nanosized NH4HSO4, J. Appl Phys 112 (2012) 034104-034104.
DOI: 10.1063/1.4742017
Google Scholar
[7]
A. Cizman, T. Marciniszyn, D. Enke, A. Barascu, R. Poprawski, Phase transition in NH4HSO4-porous glasses nanocomposites, J Nanopart Res 15 (2013) 1756-1760.
DOI: 10.1007/s11051-013-1756-5
Google Scholar
[8]
R. Pepinsky, K. Vedam, Y.S. Okaya, S. Hosino, Ammonium Hydrogen Sulfate: A New Ferroelectric with Low Coercive Field, Phys Rev 111 (1958) 1508-1510.
DOI: 10.1103/physrev.111.1508
Google Scholar
[9]
D. Swain, V.S. Bhadram, P. Chowdhury, C. Narayana, Raman and X-ray investigations of ferroelectric phase transition in NH4HSO4, J Phys Chem 116 (2012) 223-230.
DOI: 10.1021/jp2075868
Google Scholar
[10]
S.V. Baryshnikov, E.V. Charnaya, A.Y. Milinskii, Y.A. Shatskaya, and D. Michel, Dielectric and calorimetric investigations of KNO3 in pores of nanoporous silica matrices MCM-41, Phys. Solid State 54 (2012) 636-641.
DOI: 10.1134/s1063783412030079
Google Scholar
[11]
W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles, Phys Rev B 50 (1994) 698-703.
DOI: 10.1103/physrevb.50.698
Google Scholar
[12]
C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong, Size effects of ferroelectric particles described by the transverse Ising model, Phys Rev B 62 (2000) 11423-11427.
DOI: 10.1103/physrevb.62.11423
Google Scholar
[13]
B.F. Borisov, E.V. Charnaya, S.V. Baryshnikov, A.L. Pirozerskii, A.S. Bugaev, C. Tien, M.K. Lee, D. Michel, Ferroelastic phase transition in LiCsSO4 embedded into molecular sieves, Phys Lett A 375 (2010) 183-186.
DOI: 10.1016/j.physleta.2010.11.008
Google Scholar
[14]
E.V. Charnaya, M.K. Lee, C. Tien, V.N. Pak, D. V. Formus, A.L. Pirozerskii, A.I. Nedbai, E.V. Ubyivovk, S.V. Baryshnikov, L.J. Chang, Magnetic and dielectric studies of multiferroic CuO nanoparticles confined to porous glass, J. Magn Magn Mater 324 (2012).
DOI: 10.1016/j.jmmm.2012.04.046
Google Scholar
[15]
A.R. Von Hippel, in: Dielectric Materials and Applications, Artech House Publishers, Boston, MA, (1995).
Google Scholar
[16]
A.D. Reddy, S.G. Sathyanarayan, G.S. Sastry, Proton Conduction in (NH4)HSO4 Single Crystals, Phys Stat Sol (a) 73 (1982) K41-K45.
DOI: 10.1002/pssa.2210730145
Google Scholar