Dielectric Studies of Ammonium Hydrogen Sulphate (NH4HSO4), Embedded into Molecular Sieves SBA-15

Article Preview

Abstract:

Temperature dependencies of linear dielectric permittivity and third harmonic coefficient of nanoporous matrices SBA-15 with channel pore size of 7,5 nm filled with ferroelectric NH4HSO4 compared to bulk ammonium hydrogen sulphate were studied. The measurements were performed in a heating and cooling mode with a temperature range from 100 K to room temperature. Low-temperature phase transition shift of 7-8 degrees to low temperatures was found for nanostructured ammonium hydrogen sulphate compared to bulk NH4HSO4. The experimental data were treated within the framework of the models developed for isolated small ferroelectric particles and arrays of coupled particles. The rise of the space charge polarization effects was also observed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 247)

Pages:

85-90

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Yadlovker, S. Berger, Uniform orientation and size of ferroelectric domains, Phys Rev B 71 (2005) 184112-184117.

DOI: 10.1103/physrevb.71.184112

Google Scholar

[2] N.G. Popravko, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, Structure and Electrical Properties of Nanocomposites with TGS Inclusions, Ferroelectrics 443 (2013) 8-15.

DOI: 10.1080/00150193.2013.778577

Google Scholar

[3] C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov, S.Y. Sun, D. Michel, W. Böhlmann, Coexistence of melted and ferroelectric states in sodium nitrite within mesoporous sieves, Phys Rev B 72 (2005) 104105-104110.

DOI: 10.1103/physrevb.72.104105

Google Scholar

[4] C. Tien, E.V. Charnaya, M.K. Lee, S.V. Baryshnikov, D. Michel, W. Böhlmann, NMR studies of structure and ferroelectricity for Rochelle salt nanoparticles embedded into mesoporous sieves, J Phys: Cond Matter 20 (2008) 215205-215210.

DOI: 10.1088/0953-8984/20/21/215205

Google Scholar

[5] S.V. Baryshnikov, E.V. Charnaya, A.Y. Milinskiy, E.V. Stukova, C. Tien, D. Michel, Phase transitions in K1-xNaxNO3 embedded into molecular sieves, J Phys: Condens Matter 21 (2009) 325902-325907.

DOI: 10.1088/0953-8984/21/32/325902

Google Scholar

[6] A. Cizman, T. Marciniszyn, R. Poprawski, Pressure effect on the ferroelectric phase transition in nanosized NH4HSO4, J. Appl Phys 112 (2012) 034104-034104.

DOI: 10.1063/1.4742017

Google Scholar

[7] A. Cizman, T. Marciniszyn, D. Enke, A. Barascu, R. Poprawski, Phase transition in NH4HSO4-porous glasses nanocomposites, J Nanopart Res 15 (2013) 1756-1760.

DOI: 10.1007/s11051-013-1756-5

Google Scholar

[8] R. Pepinsky, K. Vedam, Y.S. Okaya, S. Hosino, Ammonium Hydrogen Sulfate: A New Ferroelectric with Low Coercive Field, Phys Rev 111 (1958) 1508-1510.

DOI: 10.1103/physrev.111.1508

Google Scholar

[9] D. Swain, V.S. Bhadram, P. Chowdhury, C. Narayana, Raman and X-ray investigations of ferroelectric phase transition in NH4HSO4, J Phys Chem 116 (2012) 223-230.

DOI: 10.1021/jp2075868

Google Scholar

[10] S.V. Baryshnikov, E.V. Charnaya, A.Y. Milinskii, Y.A. Shatskaya, and D. Michel, Dielectric and calorimetric investigations of KNO3 in pores of nanoporous silica matrices MCM-41, Phys. Solid State 54 (2012) 636-641.

DOI: 10.1134/s1063783412030079

Google Scholar

[11] W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles, Phys Rev B 50 (1994) 698-703.

DOI: 10.1103/physrevb.50.698

Google Scholar

[12] C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong, Size effects of ferroelectric particles described by the transverse Ising model, Phys Rev B 62 (2000) 11423-11427.

DOI: 10.1103/physrevb.62.11423

Google Scholar

[13] B.F. Borisov, E.V. Charnaya, S.V. Baryshnikov, A.L. Pirozerskii, A.S. Bugaev, C. Tien, M.K. Lee, D. Michel, Ferroelastic phase transition in LiCsSO4 embedded into molecular sieves, Phys Lett A 375 (2010) 183-186.

DOI: 10.1016/j.physleta.2010.11.008

Google Scholar

[14] E.V. Charnaya, M.K. Lee, C. Tien, V.N. Pak, D. V. Formus, A.L. Pirozerskii, A.I. Nedbai, E.V. Ubyivovk, S.V. Baryshnikov, L.J. Chang, Magnetic and dielectric studies of multiferroic CuO nanoparticles confined to porous glass, J. Magn Magn Mater 324 (2012).

DOI: 10.1016/j.jmmm.2012.04.046

Google Scholar

[15] A.R. Von Hippel, in: Dielectric Materials and Applications, Artech House Publishers, Boston, MA, (1995).

Google Scholar

[16] A.D. Reddy, S.G. Sathyanarayan, G.S. Sastry, Proton Conduction in (NH4)HSO4 Single Crystals, Phys Stat Sol (a) 73 (1982) K41-K45.

DOI: 10.1002/pssa.2210730145

Google Scholar