Discrete Preisach Model of a Shape Memory Alloy Actuator

Article Preview

Abstract:

Shape Memory Alloy is a material used to designing actuators. These actuators have many advantages. They are light, strong and silent. They are building in laboratory and tested because beside advantages they have disadvantages too. SMA actuators have nonlinear characteristics with hysteresis loop.In the first part of the paper Shape Memory Alloys are shortly described. Next mathematical model was formulated. In the paper the Preisach model was developed. Discrete form of the model was considered and implemented. After parameter identification model was implemented in LabView. Tests of the model were conducted and results were worked. Obtained characteristics of the SMA actuator are shown in the paper. At the end of the paper the conclusions were formulated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 248)

Pages:

227-234

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Otsuka, Wayman C.M., Shape Memory Materials, Cambridge, (1998).

Google Scholar

[2] W. Rączka, M. Sibielak, J. Kowal, J. Konieczny, Application of an SMA Spring for Vibration Screen Control, J. Low Freq. Noise, Vib. Act. Control. 32 (2013) 113–128.

DOI: 10.1260/0263-0923.32.1-2.117

Google Scholar

[3] W. Rączka, J. Konieczny, M. Sibielak, Laboratory Tests of Shape Memory Alloy Wires, Solid State Phenom. 199 (2013) 365–370. doi: 10. 4028/www. scientific. net/SSP. 199. 365.

DOI: 10.4028/www.scientific.net/ssp.199.365

Google Scholar

[4] I.D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, Elsevier, 2003. doi: 10. 1016/B978-0-12-480873-7. 50009-8.

Google Scholar

[5] F. Preisach, Über die magnetische Nachwirkung, Zeitschrift für Phys. 94 (1935) 274–302.

Google Scholar

[6] M.A. Krasnosel'skii, A. V. Pokrovskii, Systems with Hysteresis, Springer-Verlag, (2011).

Google Scholar

[7] D.H. Everett, W.I. Whitton, A general approach to hysteresis, Trans. Faraday Soc. 48 (1952) 749. doi: 10. 1039/tf9524800749.

DOI: 10.1039/tf9524800749

Google Scholar

[8] D.H. Everett, F.W. Smith, A general approach to hysteresis. Part 2: Development of the domain theory, Trans. Faraday Soc. 50 (1954) 187. doi: 10. 1039/tf9545000187.

DOI: 10.1039/tf9545000187

Google Scholar

[9] D.H. Everett, A general approach to hysteresis. Part 3. A formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc. 50 (1954) 1077. doi: 10. 1039/tf9545001077.

DOI: 10.1039/tf9545001077

Google Scholar

[10] D.H. Everett, A general approach to hysteresis. Part 4. An alternative formulation of the domain model, Trans. Faraday Soc. 51 (1955) 1551. doi: 10. 1039/tf9555101551.

DOI: 10.1039/tf9555101551

Google Scholar

[11] J.A. Enderby, The domain model of hysteresis. Part 1. Independent domains, Trans. Faraday Soc. 51 (1955) 835. doi: 10. 1039/tf9555100835.

DOI: 10.1039/tf9555100835

Google Scholar

[12] J.A. Enderby, The domain model of hysteresis. Part 2. Interacting domains, Trans. Faraday Soc. 52 (1956) 106. doi: 10. 1039/tf9565200106.

DOI: 10.1039/tf9565200106

Google Scholar

[13] B. Azzerboni, E. Cardelli, G. Finocchio, A comparative study of Preisach scalar hysteresis models, Phys. B Condens. Matter. 343 (2004) 164–170. doi: 10. 1016/j. physb. 2003. 09. 055.

DOI: 10.1016/j.physb.2003.09.055

Google Scholar

[14] L. Li, H. Wang, A. Zhou, Nonlinear elastic deformation of magnesium and cobalt by Preisach-Mayergoyz model, Trans. Nonferrous Met. Soc. China. 22 (2012) 2220–2225. doi: 10. 1016/S1003-6326(11)61452-0.

DOI: 10.1016/s1003-6326(11)61452-0

Google Scholar

[15] V. Ionita, E. Cazacu, Identification of hysteresis Preisach model using magneto-optic microscopy, Phys. B Condens. Matter. 403 (2008) 376–378. doi: 10. 1016/j. physb. 2007. 08. 053.

DOI: 10.1016/j.physb.2007.08.053

Google Scholar

[16] C. Natale, F. Velardi, C. Visone, Identification and compensation of Preisach hysteresis models for magnetostrictive actuators, Phys. B Condens. Matter. 306 (2001) 161–165. doi: 10. 1016/S0921-4526(01)00997-8.

DOI: 10.1016/s0921-4526(01)00997-8

Google Scholar

[17] M. Kuczmann, Vector Preisach hysteresis modeling: Measurement, identification and application, Phys. B Condens. Matter. 406 (2011) 1403–1409. doi: 10. 1016/j. physb. 2011. 01. 037.

DOI: 10.1016/j.physb.2011.01.037

Google Scholar

[18] K.K. Ahn, N.B. Kha, Internal model control for shape memory alloy actuators using fuzzy based Preisach model, 136 (2007) 730–741. doi: 10. 1016/j. sna. 2006. 12. 011.

DOI: 10.1016/j.sna.2006.12.011

Google Scholar

[19] K.K. Ahn, N.B. Kha, Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic, Mechatronics. 18 (2008) 141–152. doi: 10. 1016/j. mechatronics. 2007. 10. 008.

DOI: 10.1016/j.mechatronics.2007.10.008

Google Scholar

[20] A. Ktena, D.I. Fotiadis, P.D. Spanos, C.V. Massalas, A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys, Phys. B Condens. Matter. 306 (2001) 84–90. doi: 10. 1016/S0921-4526(01)00983-8.

DOI: 10.1016/s0921-4526(01)00983-8

Google Scholar

[21] E. Delaleau, J. Bourgeot, S. Calloch, Control Engineering Practice Experimental comparison of classical PID and model-free control : Position control of a shape memory alloy active spring, 19 (2011).

DOI: 10.1016/j.conengprac.2011.01.005

Google Scholar