[1]
K. Otsuka, Wayman C.M., Shape Memory Materials, Cambridge, (1998).
Google Scholar
[2]
W. Rączka, M. Sibielak, J. Kowal, J. Konieczny, Application of an SMA Spring for Vibration Screen Control, J. Low Freq. Noise, Vib. Act. Control. 32 (2013) 113–128.
DOI: 10.1260/0263-0923.32.1-2.117
Google Scholar
[3]
W. Rączka, J. Konieczny, M. Sibielak, Laboratory Tests of Shape Memory Alloy Wires, Solid State Phenom. 199 (2013) 365–370. doi: 10. 4028/www. scientific. net/SSP. 199. 365.
DOI: 10.4028/www.scientific.net/ssp.199.365
Google Scholar
[4]
I.D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, Elsevier, 2003. doi: 10. 1016/B978-0-12-480873-7. 50009-8.
Google Scholar
[5]
F. Preisach, Über die magnetische Nachwirkung, Zeitschrift für Phys. 94 (1935) 274–302.
Google Scholar
[6]
M.A. Krasnosel'skii, A. V. Pokrovskii, Systems with Hysteresis, Springer-Verlag, (2011).
Google Scholar
[7]
D.H. Everett, W.I. Whitton, A general approach to hysteresis, Trans. Faraday Soc. 48 (1952) 749. doi: 10. 1039/tf9524800749.
DOI: 10.1039/tf9524800749
Google Scholar
[8]
D.H. Everett, F.W. Smith, A general approach to hysteresis. Part 2: Development of the domain theory, Trans. Faraday Soc. 50 (1954) 187. doi: 10. 1039/tf9545000187.
DOI: 10.1039/tf9545000187
Google Scholar
[9]
D.H. Everett, A general approach to hysteresis. Part 3. A formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc. 50 (1954) 1077. doi: 10. 1039/tf9545001077.
DOI: 10.1039/tf9545001077
Google Scholar
[10]
D.H. Everett, A general approach to hysteresis. Part 4. An alternative formulation of the domain model, Trans. Faraday Soc. 51 (1955) 1551. doi: 10. 1039/tf9555101551.
DOI: 10.1039/tf9555101551
Google Scholar
[11]
J.A. Enderby, The domain model of hysteresis. Part 1. Independent domains, Trans. Faraday Soc. 51 (1955) 835. doi: 10. 1039/tf9555100835.
DOI: 10.1039/tf9555100835
Google Scholar
[12]
J.A. Enderby, The domain model of hysteresis. Part 2. Interacting domains, Trans. Faraday Soc. 52 (1956) 106. doi: 10. 1039/tf9565200106.
DOI: 10.1039/tf9565200106
Google Scholar
[13]
B. Azzerboni, E. Cardelli, G. Finocchio, A comparative study of Preisach scalar hysteresis models, Phys. B Condens. Matter. 343 (2004) 164–170. doi: 10. 1016/j. physb. 2003. 09. 055.
DOI: 10.1016/j.physb.2003.09.055
Google Scholar
[14]
L. Li, H. Wang, A. Zhou, Nonlinear elastic deformation of magnesium and cobalt by Preisach-Mayergoyz model, Trans. Nonferrous Met. Soc. China. 22 (2012) 2220–2225. doi: 10. 1016/S1003-6326(11)61452-0.
DOI: 10.1016/s1003-6326(11)61452-0
Google Scholar
[15]
V. Ionita, E. Cazacu, Identification of hysteresis Preisach model using magneto-optic microscopy, Phys. B Condens. Matter. 403 (2008) 376–378. doi: 10. 1016/j. physb. 2007. 08. 053.
DOI: 10.1016/j.physb.2007.08.053
Google Scholar
[16]
C. Natale, F. Velardi, C. Visone, Identification and compensation of Preisach hysteresis models for magnetostrictive actuators, Phys. B Condens. Matter. 306 (2001) 161–165. doi: 10. 1016/S0921-4526(01)00997-8.
DOI: 10.1016/s0921-4526(01)00997-8
Google Scholar
[17]
M. Kuczmann, Vector Preisach hysteresis modeling: Measurement, identification and application, Phys. B Condens. Matter. 406 (2011) 1403–1409. doi: 10. 1016/j. physb. 2011. 01. 037.
DOI: 10.1016/j.physb.2011.01.037
Google Scholar
[18]
K.K. Ahn, N.B. Kha, Internal model control for shape memory alloy actuators using fuzzy based Preisach model, 136 (2007) 730–741. doi: 10. 1016/j. sna. 2006. 12. 011.
DOI: 10.1016/j.sna.2006.12.011
Google Scholar
[19]
K.K. Ahn, N.B. Kha, Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic, Mechatronics. 18 (2008) 141–152. doi: 10. 1016/j. mechatronics. 2007. 10. 008.
DOI: 10.1016/j.mechatronics.2007.10.008
Google Scholar
[20]
A. Ktena, D.I. Fotiadis, P.D. Spanos, C.V. Massalas, A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys, Phys. B Condens. Matter. 306 (2001) 84–90. doi: 10. 1016/S0921-4526(01)00983-8.
DOI: 10.1016/s0921-4526(01)00983-8
Google Scholar
[21]
E. Delaleau, J. Bourgeot, S. Calloch, Control Engineering Practice Experimental comparison of classical PID and model-free control : Position control of a shape memory alloy active spring, 19 (2011).
DOI: 10.1016/j.conengprac.2011.01.005
Google Scholar