[1]
B. -T. Wang, R. -L. Chen, The Use of Piezoelectric Transducers for Smart Structural Testing, Journal of Intelligent Material Systems and Structures. 11(2000) 713-724.
DOI: 10.1106/p9gf-l9xt-fxcj-clbj
Google Scholar
[2]
H. A. Sodano, G. Park, D. J Leo., D. J. Inman, Use of piezoelectric energy harvesting devices for charging batteries, Proceedings of the Society of Photo-optical Instrumentation Engineers. 5050 (2003) 101-108.
Google Scholar
[3]
H. A. Sodano, G. Park, D. J. Leo, D. J. Inman, Model of Piezoelectric Power Harvesting Beam, International Mechanical Engineering Congress, American Society of Mechanical Engineers 2003).
DOI: 10.1115/imece2003-43250
Google Scholar
[4]
S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart Materials and Structures. 16(2007) R1-R21.
DOI: 10.1088/0964-1726/16/3/r01
Google Scholar
[5]
S. Roundy, P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures. 13(2004) 1131-1142.
DOI: 10.1088/0964-1726/13/5/018
Google Scholar
[6]
S. B. Ayed, A. Abdelkefi, F. Najar, M. R. Hajj, Design and performance of variable-shaped piezoelectric energy harvesters, Journal of Intelligent Material Systems and Structures. 25(2013) 174-186.
DOI: 10.1177/1045389x13489365
Google Scholar
[7]
T. Rodig, A. Schonecker, A Survey on Piezoelectric Ceramics for Generator Applications, Journal of American Ceramic Society. 93(2010) 901-912.
Google Scholar
[8]
Q. C. Guan, B. Ju, J. W. Xu, Y. B. Liu, Z. H. Feng, Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses, Journal of Intelligent Material Systems and Structures. 24(2013) 1059-1066.
DOI: 10.1177/1045389x13476150
Google Scholar
[9]
H. J. Song, Y. T. Choi, N. M. Wereley, A. Purekar, Comparison of monolithic and composite piezoelectric material–based energy harvesting devices, Journal of Intelligent Material Systems and Structures. 25(2014). 1825-1837.
DOI: 10.1177/1045389x14530592
Google Scholar
[10]
Q. Dai, K. Ng, Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modelling, Mechanics of Materials. 53 (2012) 29-46.
DOI: 10.1016/j.mechmat.2012.04.014
Google Scholar
[11]
T. Gang, Y. Bin, L. Jing-quan, X. Bin, Z. Hong-ying, Y. Chun-sheng, Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film, Sensors and Actuators A: Physical. 205(2014).
DOI: 10.1016/j.sna.2013.11.007
Google Scholar
[12]
Y. Yang, L. Tang, H. Li, Vibration energy harvesting using macro-fiber composites, Smart Materials and Structures. 18(2009).
DOI: 10.1088/0964-1726/18/11/115025
Google Scholar
[13]
L. Swallow, J. Luo, E. Siores, I. Patel, D. Dodds, A piezoelectric fibre composite based energy harvesting device for potential wearable applications, Smart Materials and Structures. 17(2008).
DOI: 10.1088/0964-1726/17/2/025017
Google Scholar
[14]
J. Ilczuk, A. Zarycka, M. Czerwiec, Synteza i właściwości i piezoelektryczne ceramiki typu PZT otrzymywanej metodą zolowo-żelową, Ceramics. 89(2005) 115-121.
Google Scholar
[15]
H. Konka, M. Wahab, K. Lian, The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate, Smart Materials and Structures. 21/(2012).
DOI: 10.1088/0964-1726/21/1/015016
Google Scholar
[16]
S. Roundy, On the Effectiveness of Vibration-based Energy Harvesting, Journal of Intelligent Material Systems and Structures. 16(2005) 809-823.
DOI: 10.1177/1045389x05054042
Google Scholar
[17]
http: /www. morgantechnicalceramics. com.
Google Scholar
[18]
http: /www. smart-material. com.
Google Scholar
[19]
Jung-Hoon Lim, Seong-SuJeonga, Na-RiKima, Seong-KyuCheona, Myong-HoKimb, Tae-Gone Park, Design and fabrication of across-shaped piezoelectric generator for energy harvesting, Ceramics International. 39 (2013) 641–645.
Google Scholar
[20]
S. Leadenham, A. Erturk, Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances, Smart Material and Structure. 24 (2015).
DOI: 10.1088/0964-1726/24/5/055021
Google Scholar
[21]
E. Lefeuvre, G. Sebald, D. Guyomar, M. Lallart, C. Richard, Materials, structures and power interfaces for efficient piezoelectric energy harvesting, Journal of Electroceramics. 22(2009) 171-179.
DOI: 10.1007/s10832-007-9361-6
Google Scholar
[22]
S. Roundy, P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures 13 (2004), 1131-1142.
DOI: 10.1088/0964-1726/13/5/018
Google Scholar
[23]
T. Nagayama, H. -J. Jung, B. F. Spencer, Sh. Jang, K. l Mechitov, S. Cho, M. Ushita, Ch. -B. Yun, G. Agha, Y. Fujino, International collaboration to develop a structural health monitoring system utilizing wireless smart sensor network and its deployment on a cable-stayed bridge, 5th World Conference on Structural Control and Monitoring (2010).
DOI: 10.12989/sss.2010.6.5_6.439
Google Scholar
[24]
J. P. Lynch, K. J. Loh, A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring, The Shock and Vibration Digest (2), (2006) 91–128.
DOI: 10.1177/0583102406061499
Google Scholar
[25]
P. Woias, M. Wischke, Ch. Eichorn, B. Fuchs, An energy-autonomous wireless temperature monitoring system powered by piezoelectric energy harvesting, Procedings Of PowerMEMS 2009, 209-212.
Google Scholar