Piezoelectric Generators in the Energy Harvesting Systems

Article Preview

Abstract:

Piezoelectric generator is a device used to convert mechanical energy into electrical energy. The basic element of the generator is made from piezoelectric material in which electrical energy is created as a result of deformations caused by reactions of mechanical structure of the generator. The amount of obtained electrical energy depends mainly on the piezoelectric material used, construction of the generator as well as a type of the source of mechanical energy. Construction of the generator is adjusted to the type of the source of mechanical energy. In order to obtain electrical energy from mechanical vibrations, the most frequent solution is beam structure. Effective electric energy generation by the piezoelectric generators depends on the following main factors: piezoelectric material used, generator structure, electronic system of the control and storage of energy, and the generator size. Generated by piezoelectric generators electric energy, can be used to power of miniaturized electronic devices with low power supply demand. The goal may be monitoring of the structure or industrial processes in hardly accessible places or/and in systems requiring the use of a big number of sensors. It will make cutting the operating costs possible and allow to create the eco-friendly technology without waste discharged batteries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 248)

Pages:

243-248

Citation:

Online since:

March 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. -T. Wang, R. -L. Chen, The Use of Piezoelectric Transducers for Smart Structural Testing, Journal of Intelligent Material Systems and Structures. 11(2000) 713-724.

DOI: 10.1106/p9gf-l9xt-fxcj-clbj

Google Scholar

[2] H. A. Sodano, G. Park, D. J Leo., D. J. Inman, Use of piezoelectric energy harvesting devices for charging batteries, Proceedings of the Society of Photo-optical Instrumentation Engineers. 5050 (2003) 101-108.

Google Scholar

[3] H. A. Sodano, G. Park, D. J. Leo, D. J. Inman, Model of Piezoelectric Power Harvesting Beam, International Mechanical Engineering Congress, American Society of Mechanical Engineers 2003).

DOI: 10.1115/imece2003-43250

Google Scholar

[4] S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart Materials and Structures. 16(2007) R1-R21.

DOI: 10.1088/0964-1726/16/3/r01

Google Scholar

[5] S. Roundy, P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures. 13(2004) 1131-1142.

DOI: 10.1088/0964-1726/13/5/018

Google Scholar

[6] S. B. Ayed, A. Abdelkefi, F. Najar, M. R. Hajj, Design and performance of variable-shaped piezoelectric energy harvesters, Journal of Intelligent Material Systems and Structures. 25(2013) 174-186.

DOI: 10.1177/1045389x13489365

Google Scholar

[7] T. Rodig, A. Schonecker, A Survey on Piezoelectric Ceramics for Generator Applications, Journal of American Ceramic Society. 93(2010) 901-912.

Google Scholar

[8] Q. C. Guan, B. Ju, J. W. Xu, Y. B. Liu, Z. H. Feng, Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses, Journal of Intelligent Material Systems and Structures. 24(2013) 1059-1066.

DOI: 10.1177/1045389x13476150

Google Scholar

[9] H. J. Song, Y. T. Choi, N. M. Wereley, A. Purekar, Comparison of monolithic and composite piezoelectric material–based energy harvesting devices, Journal of Intelligent Material Systems and Structures. 25(2014). 1825-1837.

DOI: 10.1177/1045389x14530592

Google Scholar

[10] Q. Dai, K. Ng, Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modelling, Mechanics of Materials. 53 (2012) 29-46.

DOI: 10.1016/j.mechmat.2012.04.014

Google Scholar

[11] T. Gang, Y. Bin, L. Jing-quan, X. Bin, Z. Hong-ying, Y. Chun-sheng, Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film, Sensors and Actuators A: Physical. 205(2014).

DOI: 10.1016/j.sna.2013.11.007

Google Scholar

[12] Y. Yang, L. Tang, H. Li, Vibration energy harvesting using macro-fiber composites, Smart Materials and Structures. 18(2009).

DOI: 10.1088/0964-1726/18/11/115025

Google Scholar

[13] L. Swallow, J. Luo, E. Siores, I. Patel, D. Dodds, A piezoelectric fibre composite based energy harvesting device for potential wearable applications, Smart Materials and Structures. 17(2008).

DOI: 10.1088/0964-1726/17/2/025017

Google Scholar

[14] J. Ilczuk, A. Zarycka, M. Czerwiec, Synteza i właściwości i piezoelektryczne ceramiki typu PZT otrzymywanej metodą zolowo-żelową, Ceramics. 89(2005) 115-121.

Google Scholar

[15] H. Konka, M. Wahab, K. Lian, The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate, Smart Materials and Structures. 21/(2012).

DOI: 10.1088/0964-1726/21/1/015016

Google Scholar

[16] S. Roundy, On the Effectiveness of Vibration-based Energy Harvesting, Journal of Intelligent Material Systems and Structures. 16(2005) 809-823.

DOI: 10.1177/1045389x05054042

Google Scholar

[17] http: /www. morgantechnicalceramics. com.

Google Scholar

[18] http: /www. smart-material. com.

Google Scholar

[19] Jung-Hoon Lim, Seong-SuJeonga, Na-RiKima, Seong-KyuCheona, Myong-HoKimb, Tae-Gone Park, Design and fabrication of across-shaped piezoelectric generator for energy harvesting, Ceramics International. 39 (2013) 641–645.

Google Scholar

[20] S. Leadenham, A. Erturk, Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances, Smart Material and Structure. 24 (2015).

DOI: 10.1088/0964-1726/24/5/055021

Google Scholar

[21] E. Lefeuvre, G. Sebald, D. Guyomar, M. Lallart, C. Richard, Materials, structures and power interfaces for efficient piezoelectric energy harvesting, Journal of Electroceramics. 22(2009) 171-179.

DOI: 10.1007/s10832-007-9361-6

Google Scholar

[22] S. Roundy, P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures 13 (2004), 1131-1142.

DOI: 10.1088/0964-1726/13/5/018

Google Scholar

[23] T. Nagayama, H. -J. Jung, B. F. Spencer, Sh. Jang, K. l Mechitov, S. Cho, M. Ushita, Ch. -B. Yun, G. Agha, Y. Fujino, International collaboration to develop a structural health monitoring system utilizing wireless smart sensor network and its deployment on a cable-stayed bridge, 5th World Conference on Structural Control and Monitoring (2010).

DOI: 10.12989/sss.2010.6.5_6.439

Google Scholar

[24] J. P. Lynch, K. J. Loh, A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring, The Shock and Vibration Digest (2), (2006) 91–128.

DOI: 10.1177/0583102406061499

Google Scholar

[25] P. Woias, M. Wischke, Ch. Eichorn, B. Fuchs, An energy-autonomous wireless temperature monitoring system powered by piezoelectric energy harvesting, Procedings Of PowerMEMS 2009, 209-212.

Google Scholar