[1]
Milecki A., Modelling and Investigations of Electrohydraulic Servo Valve with Piezo Element, Archiwum Technologii Maszyn i Automatyzacji, 26/2 (2006), 181-184.
Google Scholar
[2]
Sedziak D. Investigation of electrohydraulic servo valves with piezo bender as control element. In: Proceedings of 7th international fluid power conference, Aachen, Germany, March 2010. Germany: RWTH Aachen.
DOI: 10.25368/2020.21
Google Scholar
[3]
Sangiah, Dhinesh K., et al. A novel piezohydraulic aerospace servovalve. Part 1: design and modelling., Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 227. 4 (2013): 371-389.
DOI: 10.1177/0959651813478288
Google Scholar
[4]
Karunanidhi, S., and M. Singaperumal. Mathematical modelling and experimental characterization of a high dynamic servo valve integrated with piezoelectric actuator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 224. 4 (2010).
DOI: 10.1243/09596518jsce899
Google Scholar
[5]
Reichert M. High response hydraulic servovalve with piezo-actuators in the pilot stage. Olhydraulik and Pnuematik 2006; 12: 1–17.
Google Scholar
[6]
Changbin, Guan, and Jiao Zongxia. A piezoelectric direct-drive servo valve with a novel multi-body contacting spool-driving mechanism: Design, modelling and experiment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228. 1 (2014).
DOI: 10.1177/0954406213483072
Google Scholar
[7]
Sibielak M., Optimal controller for vibration isolation system with controlled hydraulic damper by piezoelectric stack, Mechanical Systems and Signal Processing, vol. 36, no. 1, p.118–126, Mar. (2013).
DOI: 10.1016/j.ymssp.2011.08.007
Google Scholar
[8]
Stefanski F., Nowak A. and Minorowicz B. Pneumatic single flapper nozzle valve driven by piezoelectric tube, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 91 Nr 1/(2015).
DOI: 10.15199/48.2015.01.03
Google Scholar
[9]
Zhou M., Gao W., Yang Z., Stiffness analysis of electromechanical transducer for nozzle flapper piezoelectric servo valve, Przegląd Elektrotechniczny 9b (2012), 196-199.
Google Scholar
[10]
Zhu, Yuchuan, Xulei Yang, and Xiaolu Wang. Development of a four-nozzle flapper servovalve driven by a giant magnetostrictive actuator., Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 229. 4 (2015).
DOI: 10.1177/0959651814565829
Google Scholar
[11]
Karunanidhi, S., and M. Singaperumal. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve., Sensors and Actuators A: Physical 157. 2 (2010): 185-197.
DOI: 10.1016/j.sna.2009.11.014
Google Scholar
[12]
Mohd Jani J., Learya M., Subica A., Gibsonc M. A., A review of shape memory alloy research, applications and opportunities, Materials&Design, 56 (2014), 1078-1113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[13]
Gradin H., Clausi D., Braun S., Stemme G., Peirs J., van der Wijngaart W., Reynaerts D., A low-power high-flow shape memory alloy wire gas microvalve, Journal of Micromechanics and Microengineering, 22/7 (2012), 1-10.
DOI: 10.1088/0960-1317/22/7/075002
Google Scholar
[14]
Tiboni M., Borboni A., Mor M., Pomi D., An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires: design and analysis, Journal of Systems and Control Engineering, 225/3 (2011), 443-451.
DOI: 10.1177/2041304110394531
Google Scholar
[15]
Raczka W, Konieczny J, Sibielak M, Mathematical Model of a Shape Memory Alloy Spring Intended for Vibration Reduction Systems, Control Engineering In Materials Processing Book Series: Solid State Phenomena, Volume: 177, pages: 65-75, Published: (2011).
DOI: 10.4028/www.scientific.net/ssp.177.65
Google Scholar
[16]
Flaga, Stanislaw, Janusz Pluta, and Bogdan Sapinski. Characterization of MSMA-based Pneumatic Valves., Acta Montanistica Slovaca 16. 1 (2011): 34.
Google Scholar
[17]
Flaga S., Pluta J., Sapiński B., Pneumatic Valves Based on Magnetic Shape Memory Alloys: Potential Applicatins, Acta Monostatica Slovaca, 16 (2011), 34-38.
DOI: 10.1109/carpathiancc.2011.5945827
Google Scholar
[18]
Suorsa I., Tellinen I., Pagounis E., Aaltio I., Ullakko K., Applications of Magnetic Shape Memory Actuators, International Conference on New Actuators and Drives ACTUATOR02, Bremen (2002), 158-161.
Google Scholar
[19]
Flaga S., Sioma A., Characteristics of Experimental MSMA-Based Pneumatic Valves, Proceedings of SMASIS-2013, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird (2013), Paper No. SMASIS2013-3323, V001T04A016.
DOI: 10.1115/smasis2013-3323
Google Scholar
[20]
Magnetic Shape Memory Actuators for Fluidic Applications, Thomas Schiepp, Emmanouel Pagounis and Markus Laufenberg, The 9th International Fluid Power Conference, 9. IFK, March 24-26, 2014, Aachen, Germany.
Google Scholar
[21]
Al Janaideh M., Rakheja S., Su C. -Y., An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on Mechatronics, 16 (2011), No. 4, 734-744.
DOI: 10.1109/tmech.2010.2052366
Google Scholar
[22]
Janaideh M., Su C. -Y., Rakheja S., Development of the rate- dependent Prandtl–Ishlinskii model for smart actuators, Smart Materials and Structures, 17 (2008), No. 3, 035026.
DOI: 10.1088/0964-1726/17/3/035026
Google Scholar
[23]
Al Janaideh M., Rakheja S., Su C. -Y., A generalized Prandtl– Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators, Smart Materials and Structures, 18 (2009), No. 4, 045001.
DOI: 10.1088/0964-1726/18/4/045001
Google Scholar
[24]
Al Janaideh M., Rakheja S., Mao J., Su C. -Y., Inverse generalized asymmetric Prandtl-Ishlinskii model for compensation of hysteresis nonlinearities in smart actuators, International Conference on Networking, Sensing and Control ICNSC'09, (2009).
DOI: 10.1109/icnsc.2009.4919388
Google Scholar