Fabrication of Metal Laminate Composites with Interface Reinforcement by Semi-Solid Sintering

Article Preview

Abstract:

Semi-solid sintering technique has been introduced to alter the interfaces of a metal laminate composite material. A thin layer of reinforcement nanoparticles was applied on substrate metallic sheets using an ultrasonic spray deposition method. The sheets were then stacked, pressed, and sintered in the semi-solid regime of the metallic sheet. The liquid phase present in the matrix material penetrates and diffuses into the nanoparticle layer during consolidation and helps to form a gradual, nanostructured interface. Aluminum (Al6061) and magnesium (AZ31) alloy foils were used as the matrix sheets while various species of reinforcement particles were investigated, including silicon carbide (SiC), silicon (Si), and a mix of Si+SiC. Multilayered metal composites with nanostructured interfaces were successfully consolidated and were evaluated by performing a three-point bend test. AZ31 composites reinforced with SiC nanoparticle interface showed an improvement of 49% in flexural yield strength when compared with a reference sample without such interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 256)

Pages:

205-215

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Fratzl, R. Weinkamer, Nature's hierarchical materials, Progress in Materials Science, 52 (2007) 1263-1334.

DOI: 10.1016/j.pmatsci.2007.06.001

Google Scholar

[2] H. Gao, Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials, Int J Fract, 138 (2006) 101-137.

DOI: 10.1007/s10704-006-7156-4

Google Scholar

[3] R. Lakes, Materials with structural hierarchy, Nature, 361 (1993) 511-515.

Google Scholar

[4] P.R. Rao, Biomimetics, Sadhana, 28 (2003) 657-676.

Google Scholar

[5] M.A. Meyers, P. -Y. Chen, A.Y. -M. Lin, Y. Seki, Biological materials: Structure and mechanical properties, Progress in Materials Science, 53 (2008) 1-206.

DOI: 10.1016/j.pmatsci.2007.05.002

Google Scholar

[6] L. Mishnaevsky Jr, Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies, Composites Part B: Engineering, 68 (2015) 75-84.

DOI: 10.1016/j.compositesb.2014.08.029

Google Scholar

[7] J. -K. Kim, Y. -w. Mai, High strength, high fracture toughness fibre composites with interface control—A review, Composites Science and Technology, 41 (1991) 333-378.

DOI: 10.1016/0266-3538(91)90072-w

Google Scholar

[8] L. Mishnaevsky Jr, Micromechanics of hierarchical materials: a brief overview, Rev. Adv. Mater. Sci, 30 (2012) 60-72.

Google Scholar

[9] L.L. Mishnaevsky Jr, Three-dimensional numerical testing of microstructures of particle reinforced composites, Acta Materialia, 52 (2004) 4177-4188.

DOI: 10.1016/j.actamat.2004.05.032

Google Scholar

[10] A.M.K. Esawi, M.A. El Borady, Carbon nanotube-reinforced aluminium strips, Composites Science and Technology, 68 (2008) 486-492.

DOI: 10.1016/j.compscitech.2007.06.030

Google Scholar

[11] H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae, Reinforcement with carbon nanotubes in aluminum matrix composites, Scripta Mater, 59 (2008) 360-363.

DOI: 10.1016/j.scriptamat.2008.04.006

Google Scholar

[12] A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites, Mat Sci Eng a-Struct, 508 (2009) 167-173.

DOI: 10.1016/j.msea.2009.01.002

Google Scholar

[13] I. Ozdemir, S. Ahrens, S. Mücklich, B. Wielage, Nanocrystalline Al–Al2O3p and SiCp composites produced by high-energy ball milling, Journal of Materials Processing Technology, 205 (2008) 111-118.

DOI: 10.1016/j.jmatprotec.2007.11.085

Google Scholar

[14] M. Bastwros, G. -Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, X. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Composites Part B: Engineering, 60 (2014) 111-118.

DOI: 10.1016/j.compositesb.2013.12.043

Google Scholar

[15] C.N. He, N.Q. Zhao, C.S. Shi, X.W. Du, J.J. Li, H.P. Li, Q.R. Cui, An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites, Adv Mater, 19 (2007) 1128-1132.

DOI: 10.1002/adma.200601381

Google Scholar

[16] T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, Processing of carbon nanotube reinforced aluminum composite, Journal of Materials Research, 13 (1998) 2445-2449.

DOI: 10.1557/jmr.1998.0340

Google Scholar

[17] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 47 (2009) 570-577.

DOI: 10.1016/j.carbon.2008.10.041

Google Scholar

[18] B. Ogel, R. Gurbuz, Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders, Materials Science and Engineering: A, 301 (2001) 213-220.

DOI: 10.1016/s0921-5093(00)01656-7

Google Scholar

[19] M. Ravichandran, A. Naveen Sait, V. Anandakrishnan, Synthesis and forming characteristics of Al–TiO2 powder metallurgy composites during cold upsetting under plane stress state conditions, Journal of Sandwich Structures and Materials, (2015).

DOI: 10.1177/1099636214565762

Google Scholar

[20] T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki, Carbon nanotube/aluminium composites with uniform dispersion, Mater Trans, 45 (2004) 602-604.

DOI: 10.2320/matertrans.45.602

Google Scholar

[21] E. Candan, H. Ahlatci, H. Çı̈menoğlu, Abrasive wear behaviour of Al–SiC composites produced by pressure infiltration technique, Wear, 247 (2001) 133-138.

DOI: 10.1016/s0043-1648(00)00499-3

Google Scholar

[22] A. Fadavi Boostani, S. Tahamtan, Z.Y. Jiang, D. Wei, S. Yazdani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, J. Xu, X. Zhang, D. Gong, Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles, Composites Part A: Applied Science and Manufacturing, 68 (2015).

DOI: 10.1016/j.compositesa.2014.10.010

Google Scholar

[23] C.F. Deng, X.X. Zhang, D.Z. Wang, Q. Lin, A.B. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites, Mater Lett, 61 (2007) 1725-1728.

DOI: 10.1016/j.matlet.2006.07.119

Google Scholar

[24] L.M. Tham, M. Gupta, L. Cheng, Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites, Materials Science and Engineering: A, 326 (2002) 355-363.

DOI: 10.1016/s0921-5093(01)01526-x

Google Scholar

[25] L. Hao, D. Zhou, Q. Fu, Y. Hu, Multiferroic properties of multilayered BaTiO3–CoFe2O4 composites via tape casting method, J Mater Sci, 48 (2013) 178-185.

DOI: 10.1007/s10853-012-6726-2

Google Scholar

[26] R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, D. Ghosh, Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges, Journal of Power Sources, 170 (2007) 308-323.

DOI: 10.1016/j.jpowsour.2007.03.075

Google Scholar

[27] S. -R. Li, N. Yesibolati, Y. Qiao, S. -Y. Ge, X. -Y. Feng, J. -F. Zhu, C. -H. Chen, Electrostatic spray deposition of porous Fe2V4O13 films as electrodes for Li-ion batteries, Journal of Alloys and Compounds, 520 (2012) 77-82.

DOI: 10.1016/j.jallcom.2011.12.092

Google Scholar

[28] I. Concina, N. Memarian, G.S. Selopal, M.M. Natile, G. Sberveglieri, A. Vomiero, Spray-assisted silar deposition of cadmium sulphide quantum dots on metal oxide films for excitonic solar cells, Journal of Power Sources, 240 (2013) 736-744.

DOI: 10.1016/j.jpowsour.2013.05.012

Google Scholar

[29] L. Liu, G. -Y. Kim, A. Chandra, Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis, Journal of Power Sources, 195 (2010) 7046-7053.

DOI: 10.1016/j.jpowsour.2010.04.083

Google Scholar

[30] M. Dobre, L. Bolle, Practical design of ultrasonic spray devices: experimental testing of several atomizer geometries, Experimental Thermal and Fluid Science, 26 (2002) 205-211.

DOI: 10.1016/s0894-1777(02)00128-0

Google Scholar

[31] M. Bastwros, G. -Y. Kim, Fabrication of Aluminum–SiC Laminate Nanocomposite by Ultrasonic Spray Deposited Sheet Bonding1, Journal of Micro and Nano-Manufacturing, 3 (2015) 031005-031005.

DOI: 10.1115/1.4030705

Google Scholar

[32] M. Bastwros, G. -Y. Kim, Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication, Powder Technology, 288 (2016) 279-285.

DOI: 10.1016/j.powtec.2015.10.039

Google Scholar

[33] U.P. Muecke, G.L. Messing, L.J. Gauckler, The Leidenfrost effect during spray pyrolysis of nickel oxide-gadolinia doped ceria composite thin films, Thin Solid Films, 517 (2009) 1515-1521.

DOI: 10.1016/j.tsf.2008.08.158

Google Scholar

[34] F. Ely, A. Matsumoto, B. Zoetebier, V.S. Peressinotto, M.K. Hirata, D.A. de Sousa, R. Maciel, Handheld and automated ultrasonic spray deposition of conductive PEDOT: PSS films and their application in AC EL devices, Organic Electronics, 15 (2014).

DOI: 10.1016/j.orgel.2014.02.022

Google Scholar

[35] Y. Wu, G. -Y. Kim, A.M. Russell, Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing, Materials Science and Engineering: A, 538 (2012) 164-172.

DOI: 10.1016/j.msea.2012.01.025

Google Scholar

[36] Y. Wu, G. -Y. Kim, Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing, Journal of Materials Processing Technology, 211 (2011) 1341-1347.

DOI: 10.1016/j.jmatprotec.2011.03.007

Google Scholar

[37] A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder, Composites Part A: Applied Science and Manufacturing, 38 (2007) 646-650.

DOI: 10.1016/j.compositesa.2006.04.006

Google Scholar

[38] Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček, P. Lukáč, Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles, Composites Science and technology, 69 (2009) 2256-2264.

DOI: 10.1016/j.compscitech.2009.06.016

Google Scholar