Experimental Investigations on the Formation of Rosettes during Shear

Article Preview

Abstract:

In this work, the effect of stirring conditions on agglomeration and coalescence-coarsening in isothermal, globulitic, semisolid AlCu10%wt was investigated. It is shown that for the investigated system, a shear rate regime exists which promotes crystallographic alignment of the agglomerated grains, leading to a rapid coalescence process, thereby the formation of rosettes. It is also experimentally validated that for lower shear rates, the size and porosity of aggregates are increased compared to that at higher level of shear.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 256)

Pages:

199-204

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Flemings, Merton C., Behavior of metal alloys in the semisolid state, Metallurgical Transactions B, 22(3) (1991) 269–293.

DOI: 10.1007/bf02651227

Google Scholar

[2] Ji, S, Das, A, & Fan, Z., Solidification behavior of the remnant liquid in the sheared semisolid slurry of Sn–15 wt. % Pb alloy, Scripta materialia, 46(3) (2002) 205–210.

DOI: 10.1016/s1359-6462(01)01221-0

Google Scholar

[3] Zoqui, EJ, Paes, M, & Es-Sadiqi, E., Macro-and microstructure analysis of SSM A356 produced by electromagnetic stirring, J. of Mat. Proc. Tech., 120(1) (2002) 365–373.

DOI: 10.1016/s0924-0136(01)01148-7

Google Scholar

[4] Flemings, MC, & Martinez, R Andy, Principles of microstructural formation in semi-solid metal processing, 116 (2006) 1–8.

DOI: 10.4028/www.scientific.net/ssp.116-117.1

Google Scholar

[5] Mullis, AM., Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta materialia, 47(6) (1999) 1783–1789.

DOI: 10.1016/s1359-6454(99)00052-x

Google Scholar

[6] Doherty, RD, Lee, Ho-In, & Feest, EA., Microstructure of stir-cast metals. Materials Science and Engineering, 65(1) (1984) 181–189.

DOI: 10.1016/0025-5416(84)90211-8

Google Scholar

[7] Ichikawa, K., Kinoshita, Y., & Shimamura, S., Grain refinement in Al–Cu binary alloys by rheocasting, Transactions of the Japan institute of metals, 26(7), (1985) 513–522.

DOI: 10.2320/matertrans1960.26.513

Google Scholar

[8] Molenaar, JMM, Katgerman, L, Kool, WH, & Smeulders, RJ., On the formation of the stircast structure. Journal of materials science, 21(2) (1986) 389–394.

DOI: 10.1007/bf01145499

Google Scholar

[9] Sannes, Stian, Arnberg, Lars, & Flemings, Merton C., Orientational relationships in semi-solid Al-6. 5 wt% Si. Light metals, Minerals, Metals and Materials Society, Warrendale, PA (1996).

Google Scholar

[10] Niroumand, B, & Xia, K., 3D study of the structure of primary crystals in a rheocast Al–Cu alloy. Materials Science and Engineering: A, 283(1) (2000) 70–75.

DOI: 10.1016/s0921-5093(00)00619-5

Google Scholar

[11] Lojkowski, W, & Gleiter, H., Low energy grain boundaries in silver. Le Journal de Physique Colloques, 46(C4) (1985) C4–89.

DOI: 10.1051/jphyscol:1985408

Google Scholar

[12] Terzi, S, Salvo, L, Suery, M, Dahle, AK, & Boller, E., Coarsening mechanisms in a dendritic Al–10% Cu alloy. Acta Materialia, 58(1) (2010) 20–30.

DOI: 10.1016/j.actamat.2009.08.052

Google Scholar

[13] Ganesan, S., & Poirier, D.R., Densities of aluminum-rich aluminum-copper alloys during solidification, Met. Trans. A- Ph. Met. and Materials science, 18(4) (1987) 721–723.

DOI: 10.1007/bf02649490

Google Scholar

[14] PandatTM 8. 1., 2008, Demo Version forAl-Cu-Mg-Si.

Google Scholar

[15] Kasperovich, G., Volkmann, T., Ratke, L., & Herlach, D., Microsegregation during solidification of an Al-Cu binary alloy at largely different cooling rates to 20, 000 K/s): modeling and experimental study. Met. and Mat. Tran. A, 39(5) (2008).

DOI: 10.1007/s11661-008-9505-6

Google Scholar

[16] Python Software Foundation, version 2. 7. Available at http: /www. python. org.

Google Scholar

[17] Grunwald, M., Minwegen, H., & Harboe, S. 2015. Freeware Clusterman, https: /github. com/MATSEAusbildung-RWTHAachen/Clusterman.

Google Scholar

[18] O. Pompe and M. Rettenmeyer, Microstrictural chnages during quenching, j. Cr. Gr. 192 (1998) 300-306.

Google Scholar