[1]
Flemings, Merton C., Behavior of metal alloys in the semisolid state, Metallurgical Transactions B, 22(3) (1991) 269–293.
DOI: 10.1007/bf02651227
Google Scholar
[2]
Ji, S, Das, A, & Fan, Z., Solidification behavior of the remnant liquid in the sheared semisolid slurry of Sn–15 wt. % Pb alloy, Scripta materialia, 46(3) (2002) 205–210.
DOI: 10.1016/s1359-6462(01)01221-0
Google Scholar
[3]
Zoqui, EJ, Paes, M, & Es-Sadiqi, E., Macro-and microstructure analysis of SSM A356 produced by electromagnetic stirring, J. of Mat. Proc. Tech., 120(1) (2002) 365–373.
DOI: 10.1016/s0924-0136(01)01148-7
Google Scholar
[4]
Flemings, MC, & Martinez, R Andy, Principles of microstructural formation in semi-solid metal processing, 116 (2006) 1–8.
DOI: 10.4028/www.scientific.net/ssp.116-117.1
Google Scholar
[5]
Mullis, AM., Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta materialia, 47(6) (1999) 1783–1789.
DOI: 10.1016/s1359-6454(99)00052-x
Google Scholar
[6]
Doherty, RD, Lee, Ho-In, & Feest, EA., Microstructure of stir-cast metals. Materials Science and Engineering, 65(1) (1984) 181–189.
DOI: 10.1016/0025-5416(84)90211-8
Google Scholar
[7]
Ichikawa, K., Kinoshita, Y., & Shimamura, S., Grain refinement in Al–Cu binary alloys by rheocasting, Transactions of the Japan institute of metals, 26(7), (1985) 513–522.
DOI: 10.2320/matertrans1960.26.513
Google Scholar
[8]
Molenaar, JMM, Katgerman, L, Kool, WH, & Smeulders, RJ., On the formation of the stircast structure. Journal of materials science, 21(2) (1986) 389–394.
DOI: 10.1007/bf01145499
Google Scholar
[9]
Sannes, Stian, Arnberg, Lars, & Flemings, Merton C., Orientational relationships in semi-solid Al-6. 5 wt% Si. Light metals, Minerals, Metals and Materials Society, Warrendale, PA (1996).
Google Scholar
[10]
Niroumand, B, & Xia, K., 3D study of the structure of primary crystals in a rheocast Al–Cu alloy. Materials Science and Engineering: A, 283(1) (2000) 70–75.
DOI: 10.1016/s0921-5093(00)00619-5
Google Scholar
[11]
Lojkowski, W, & Gleiter, H., Low energy grain boundaries in silver. Le Journal de Physique Colloques, 46(C4) (1985) C4–89.
DOI: 10.1051/jphyscol:1985408
Google Scholar
[12]
Terzi, S, Salvo, L, Suery, M, Dahle, AK, & Boller, E., Coarsening mechanisms in a dendritic Al–10% Cu alloy. Acta Materialia, 58(1) (2010) 20–30.
DOI: 10.1016/j.actamat.2009.08.052
Google Scholar
[13]
Ganesan, S., & Poirier, D.R., Densities of aluminum-rich aluminum-copper alloys during solidification, Met. Trans. A- Ph. Met. and Materials science, 18(4) (1987) 721–723.
DOI: 10.1007/bf02649490
Google Scholar
[14]
PandatTM 8. 1., 2008, Demo Version forAl-Cu-Mg-Si.
Google Scholar
[15]
Kasperovich, G., Volkmann, T., Ratke, L., & Herlach, D., Microsegregation during solidification of an Al-Cu binary alloy at largely different cooling rates to 20, 000 K/s): modeling and experimental study. Met. and Mat. Tran. A, 39(5) (2008).
DOI: 10.1007/s11661-008-9505-6
Google Scholar
[16]
Python Software Foundation, version 2. 7. Available at http: /www. python. org.
Google Scholar
[17]
Grunwald, M., Minwegen, H., & Harboe, S. 2015. Freeware Clusterman, https: /github. com/MATSEAusbildung-RWTHAachen/Clusterman.
Google Scholar
[18]
O. Pompe and M. Rettenmeyer, Microstrictural chnages during quenching, j. Cr. Gr. 192 (1998) 300-306.
Google Scholar