Thermal Conductivity Enhancement by Adding Nanoparticles to Ionic Liquids

Article Preview

Abstract:

Ionanofluids are a very new class of nanofluids having ionic liquids as the base fluid. Thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) are part of studying a new class of fluids for heat transfer. NEILs are formed by dispersing different volume fractions of nanoparticles in a base ionic liquid. In this article, only the thermal conductivity enhancement was considered for comparison of the different ionanofluids. NEILs show enhanced thermal conductivity compared to the base ILs. Maximum thermal conductivity enhancement was observed by adding 1 % MWCNT to [C4mim][(CF3SO2)2N] ionic liquid. However, if 0.05% MWCNT are added to [(C6)3PC14)][NTf2] no enhancement in thermal conductivity was noticed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

121-126

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.C. Paul, A.K.M.M. Morshed, E.B. Fox, A.E. Visser, N.J. Bridges, J.A. Khan, Buoyancy driven heat transfer behavior of [C4mim][NTf2] ionic liquid: an experimental study, Appl. Therm. Eng. 66 (2014) 534–540.

DOI: 10.1016/j.applthermaleng.2014.02.047

Google Scholar

[2] T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071–(2083).

DOI: 10.1021/cr980032t

Google Scholar

[3] H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta 357–358 (2000) 97–102.

DOI: 10.1016/s0040-6031(00)00373-7

Google Scholar

[4] F. Endres, S.Z. El Abedin, Air and water stable ionic liquids in physical chemistry, Phys. Chem. Chem. Phys. 8 (2006) 2101–2116.

DOI: 10.1039/b600519p

Google Scholar

[5] E.B. Fox, A.E. Visser, N.J. Bridges, J.W. Amoroso, Thermophysical properties of nanoparticle-enhanced ionic liquids (NEILs) heat-transfer fluids, Energy Fuels 27 (6) (2013) 3385–3393.

DOI: 10.1021/ef4002617

Google Scholar

[6] N.J. Bridges, A.E. Visser, E.B. Fox, Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids, Energy Fuels 25 (10) (2011) 4862–4864.

DOI: 10.1021/ef2012084

Google Scholar

[7] T.C. Paul, A.K.M.M. Morshed, E.B. Fox, J.A. Khan, Thermal performance of Al2O3 Nanoparticle Enhanced Ionic Liquids (NEILs) for Concentrated Solar Power (CSP) applications, Int. J. Heat Mass Transfer 85 (2015) 585–594.

DOI: 10.1016/j.ijheatmasstransfer.2015.01.071

Google Scholar

[8] T.C. Paul, A.K.M.M. Morshed, E.B. Fox, J.A. Khan, Experimental investigation of natural convection heat transfer of Al2O3 Nanoparticle Enhanced Ionic Liquids (NEILs), Int. J. Heat Mass Transfer 83 (2015) 753–761.

DOI: 10.1016/j.ijheatmasstransfer.2014.12.067

Google Scholar

[9] C.A. Nieto de Castro, M.J.V. Lourenco, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids, J. Chem. Eng. Data 55 (2010) 653–661.

DOI: 10.1021/je900648p

Google Scholar

[10] F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi, W. Ma, Surfactant-free ionic liquid based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene, Nanoscale Res. Lett. 7 (2012) 314.

DOI: 10.1186/1556-276x-7-314

Google Scholar

[11] A. Menbari, A.A. Alemrajabi, A. Rezaei, Heat transfer analysis and the effect of CuO/water nanofluid on direct absorption concentrating solar collector, Appl. Therm. Eng. 104 (2016) 176–183.

DOI: 10.1016/j.applthermaleng.2016.05.064

Google Scholar

[12] C.A. Nieto de Castro, S.M. Sohel Murshed, M.J.V. Lourenço, F.J.V. Santos, M.L. Matos Lopes and J.M.P. França, Ionanofluids– new heat transfer fluids for green processes development, Green Solvents I: Properties and Applications in Chemistry, Springer Netherlands, (2012).

DOI: 10.1007/978-94-007-1712-1_8

Google Scholar

[13] SUS Choi, Z Zhang, W. Yu, F. Lockwood, E. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett, 79 (2001) 2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[14] Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transfer, 49 (2006) 240-250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[15] H Xie, H Lee, W Youn, M Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys, 94 (2003) 4967-4971.

DOI: 10.1063/1.1613374

Google Scholar

[16] A. Amrollahi, AM Rashidi, MM Emani, K Kashefi, Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters, J Exp Nanosci 4 (2009) 347-363.

DOI: 10.1080/17458080902929929

Google Scholar

[17] G. Żyła, J. Fal, P. Estellé, The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids, Diamond & Related Materials, doi: 10. 1016/j. diamond. 2017. 02. 008 (2017).

DOI: 10.1016/j.diamond.2017.02.008

Google Scholar

[18] G. Żyła, Viscosity and thermal conductivity of MgO-EG nanofluids: experimental results and theoretical models predictions, Journal of Thermal Analysis and Calorimetry, doi: 10. 1007/s10973-017-6130-x (2017).

DOI: 10.1007/s10973-017-6130-x

Google Scholar

[19] G. Żyła, J. Fal, Viscosity, thermal and electrical conductivity of silicon dioxide – ethylene glycol transparent nanofluids: An experimental studies, Thermochimica Acta, 650 (2017) 106–113.

DOI: 10.1016/j.tca.2017.02.001

Google Scholar