[1]
A. N. Samant, N. B. Dahotre, Laser machining of structural ceramics – a review, Journal of European Ceramic Society. 29 (2009), p.969 – 93.
DOI: 10.1016/j.jeurceramsoc.2008.11.010
Google Scholar
[2]
A. N. Samant, Laser machining of advanced material structural ceramics: computational and experimental analysis, PhD dissertation. University of Tennessee, (2009).
Google Scholar
[3]
N. Dahotre, A. Samant, Laser machining of advanced materials, CRC Press, Leiden, (2011).
Google Scholar
[4]
L. Rihakova, H. Chmelickova, Laser Micromachining of Glass, Silicon, and Ceramics, Advances in Materials Science and Engineering, 2015, 6 pp.
DOI: 10.1155/2015/584952
Google Scholar
[5]
M. R. H. Knowles et al., Micro-machining of metals, ceramics and polymers using nanosecond lasers. The Int. Journal of Advanced Manufacturing Technology. 1 – 2 (2007), p.95 – 102.
DOI: 10.1007/s00170-007-0967-2
Google Scholar
[6]
E. Kacar et al., Characterization of the drilling alumina ceramic using Nd: YAG pulsed laser. Journal of Material Processing Technology. 209 (2009), p.2008 – (2014).
Google Scholar
[7]
X. C. Wang, Femtosecond laser drilling of alumina ceramic substrates, Applied Physics A. 101 (2010), p.271 – 278.
Google Scholar
[8]
A. S. Kuar, Optimization of Nd: YAG laser parameters for microdrilling of alumina with multiquality characteristics via grey–Taguchi method, Materials and manufacturing processes. 3 (2012), p.329 – 336.
DOI: 10.1080/10426914.2011.585493
Google Scholar
[9]
M. N. Hannon, Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser, Optics & Laser Technology. 4 (2012), p.913 – 922.
DOI: 10.1016/j.optlastec.2011.11.010
Google Scholar
[10]
X. C. Wang, High quality femtosecond laser cutting of alumina substrates, Optics and Lasers in Engineering. 6 (2010), p.657 – 663.
DOI: 10.1016/j.optlaseng.2010.02.001
Google Scholar
[11]
B. S. Zilbas, S. S. Akhtar, C. Karatas, Laser cutting of alumina tiles: Heating and stress analysis, Journal of Manufacturing Processes. 1 (2013), p.14 – 24.
DOI: 10.1016/j.jmapro.2012.08.001
Google Scholar
[12]
Y. Yan et al., Experimental and theoretical investigation of fibre laser crack-free cutting of thick-section alumina, Int. Journal of Machine Tools Manufacture. 51 (2011), p.859 – 870.
DOI: 10.1016/j.ijmachtools.2011.08.004
Google Scholar
[13]
H. D. Vora et al., Evolution of surface topography in one-dimensional laser machining of structural alumina, Journal of the European Ceramic Society 32 (2012), p.4205 – 4218.
DOI: 10.1016/j.jeurceramsoc.2012.06.015
Google Scholar
[14]
H. D. Vora et al., One-dimensional multipulse laser machining of structural alumina: evolution of surface topography, Int. Journal of Advanced Manufacturing Technology, 68 (2013), p.69 – 83.
DOI: 10.1007/s00170-012-4709-8
Google Scholar
[15]
H. D. Vora, N. B. Dahotre, Laser machining of structural alumina: influence of moving laser beam on the evolution of surface topography, Int. Journal of Applied Ceramic Technology, (2014), p.1 – 14.
DOI: 10.1111/ijac.12223
Google Scholar
[16]
H. D. Vora, N. B. Dahotre, Surface topography in three-dimensional laser machining of structural alumina, Journal of Manufacturing Processes, 19 (2015), p.49 – 58.
DOI: 10.1016/j.jmapro.2015.04.002
Google Scholar
[17]
C. Y. Ho et al., Ablation of aluminum oxide ceramics using femtosecond laser with multiple pulses, Current Applied Physics. 3 (2011), supplement, pp. S301–S305.
DOI: 10.1016/j.cap.2011.01.030
Google Scholar
[18]
M. Ligo, Influence of laser micromachining parameters on material rate removal and machined surface quality, MTF STU Trnava, (2015).
Google Scholar