[1]
Dai Gil Lee, et al.: Adhesion characteristics of fiber-exposed glass composites. In Composite Structures. Vol. 165 (2017), pp.9-14.
Google Scholar
[2]
M.A.J. Bosco, K. Palanikumar, B.D. Prasad, A. Velayudham: Influence of Machining Parameters on Delamination in Drilling of GFRP-armour Steel Sandwich Composites. In Procedia Engineering. Vol. 51, 2013, pp.758-763.
DOI: 10.1016/j.proeng.2013.01.108
Google Scholar
[3]
Z. Su, Z. Jia, B. Niu, G. Bi: Size effect of depth of cut on chip formation mechanism in machining of CFRP. In Composite Structures. Vol. 164 (2017), pp.316-327.
DOI: 10.1016/j.compstruct.2016.11.044
Google Scholar
[4]
M.A. Khan, A.S. Kumar: Machinability of glass fibre reinforced plastic (GFRP) composite using alumina-based ceramic cutting tools. In Journal of Manufacturing Process. Vol. 13, Issue 1, 2011, pp.67-73.
DOI: 10.1016/j.jmapro.2010.10.002
Google Scholar
[5]
F. Ning, H. Wang, W. Cong, P.K.S.C. Fernando: A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP. In Ultrasonics. Vol. 76 (2017), pp.44-51.
DOI: 10.1016/j.ultras.2016.12.012
Google Scholar
[6]
J. Akbari, et al.: Applying Ultrasonic Vibration to Decrease Drilling-Induced Delamination in GFRP Laminates. In Procedia CIRP. Vol. 6, 2013, pp.577-582.
DOI: 10.1016/j.procir.2013.03.097
Google Scholar
[7]
V. Sonkar, K. Abhishek, S. Datta, S.S. Mahapatra: Multi-objective Optimization in Drilling of GFRP Composites: A Degree of Similarity Approach. In Procedia Materials Science. Vol. 6, 2014, pp.538-543.
DOI: 10.1016/j.mspro.2014.07.068
Google Scholar
[8]
R. Sreenivasaulu: Optimization of Surface Roughness and Delamination Damage of GFRP Composite Material in End Milling using Taguchi Design Method and Artificial Neural Network. In Procedia Engineering. Vol. 64 (2013), pp.785-794.
DOI: 10.1016/j.proeng.2013.09.154
Google Scholar
[9]
K. Palanikumar: Experimental investigation and optimisation in drilling of GFRP composites. In Measurement. Vol. 44, Issue 10, 2011, pp.2138-2148.
DOI: 10.1016/j.measurement.2011.07.023
Google Scholar
[10]
M. Kuruc, T. Vopát, J. Peterka: Surface Roughness of Poly-crystalline Cubic Boron Nitride after Rotary Ultrasonic Machining. In Procedia Engineering. Vol. 100, 2015, pp.877-884.
DOI: 10.1016/j.proeng.2015.01.444
Google Scholar
[11]
M. Kuruc, M. Kusý, V. Šimna, J. Peterka: Influence of machining parameters on surface topography of cubic boron nitride at rotary ultrasonic machining. In ICPM 2015. pp.157-162. ISBN 978-86-7892-742-3.
DOI: 10.4028/www.scientific.net/kem.686.180
Google Scholar
[12]
M. Kuruc, M. Zvončan, J. Peterka: Investigation of ultrasonic assisted milling of aluminum alloy AlMg4. 5Mn. In Procedia Engineering. Vol. 69, 2014, pp.1048-1053.
DOI: 10.1016/j.proeng.2014.03.089
Google Scholar
[13]
M. Kuruc, M. Zvončan, J. Peterka: Comparison of conventional milling and milling assisted by ultrasound of aluminum alloy AW 5083. In IN-TECH 2013. pp.177-180. ISBN 978-953-6326-88-4.
Google Scholar
[14]
M. Kuruc: Machine tool loads in rotary ultrasonic machining of alumina, CBN and synthetic diamond. In Proceedings of the 26th DAAAM International Symposium. 2015, pp.519-523. ISSN 1726-9679. ISBN 978-3-902734-07-5.
DOI: 10.2507/26th.daaam.proceedings.070
Google Scholar