Computational Methods for the Assessment of Nanofluids in Abrasive Processes

Article Preview

Abstract:

Metal cutting processes such as machining or abrasive processes are related to the production of relatively large amounts of heat, as a result of the intense contact of workpiece and cutting tool. For that reason, it is often necessary to employ a cooling fluid in order to alleviate the intense and usually undesired heat-induced effects on the workpiece. Due to the cost and environmental concerns regarding cutting fluids, the heat absorbing efficiency and quantity of cutting fluids employed is always a concern. In the present work, the effect of cutting fluid type in the temperature profile of the workpiece during grinding is investigated and useful conclusions are drawn, concerning the efficiency of nanofluids as cutting fluids.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

201-206

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Dudás, G. Varga, 3D topography for environmentally friendly machined surfaces, J Phys Conf Ser 13(1) (2005) 24-27.

DOI: 10.1088/1742-6596/13/1/006

Google Scholar

[2] J. Kundrak, K. Gyani, V. Bana, Roughness of ground and hard-turned surfaces on the basis of 3D parameters, Int J Adv Manuf Technol 38(1-2) (2008) 110-119.

DOI: 10.1007/s00170-007-1086-9

Google Scholar

[3] J. Kundrák, G. Varga, Possibility of reducing environmental load in hard machining, Key Eng Mat 496 (2012) 205-210.

DOI: 10.4028/www.scientific.net/kem.496.205

Google Scholar

[4] J. Kundrak, G. Varga, I. Deszpoth, V. Molnar, Some aspects of the hard machining of bore holes, Appl Mech Mater 309 (2013) 126-132.

DOI: 10.4028/www.scientific.net/amm.309.126

Google Scholar

[5] P. Tamás, B. Illés, P. Dobos, Waste reduction possibilities for manufacturing systems in the industry 4. 0, IOP Conf Ser Mat Sc Eng Volume 161(1) (2016) 012074.

DOI: 10.1088/1757-899x/161/1/012074

Google Scholar

[6] A.G. Mamalis, J. Kundrak, D.E. Manolakos, K. Gyani, A. Markopoulos, M. Horvath, Effect of the workpiece material on the heat affected zones during grinding: a numerical simulation, Int. J. Adv. Manuf. Tech. 22 (2003) 761-767.

DOI: 10.1007/s00170-003-1685-z

Google Scholar

[7] E. Brinksmeier, J.C. Aurich, E. Govekar, C. Heinzel, H. -W. Hoffmeister, F. Klocke, J. Peters, R. Rentsch, D.J. Stephenson, E. Uhlmann, K. Weinert, M. Wittmann, Advances in modeling and simulation of grinding processes, CIRP Ann. 55(2) (2006).

DOI: 10.1016/j.cirp.2006.10.003

Google Scholar

[8] L. Kandráč, I. Maňková, M. Vrabeľ, J. Beňo, Finite element simulation of cutting forces in orthogonal machining of titanium alloy Ti-6Al-4V, Appl. Mech. Mater. 474 (2014) 192–199.

DOI: 10.4028/www.scientific.net/amm.474.192

Google Scholar

[9] P. Niesłony, W. Grzesik, R. Chudy, W. Habrat, Meshing strategies in FEM simulation of the machining process, Arch. Civ. Mech. Eng. 15(1) (2015) 62–70.

DOI: 10.1016/j.acme.2014.03.009

Google Scholar

[10] C. Mao, Z.X. Zhou, Y.H. Ren, B. Zhang, Analysis and FEM simulation of temperature field in wet surface grinding, Mater. Manuf. Process. 25(6) (2010) 399–406.

DOI: 10.1080/10426910903124811

Google Scholar

[11] P. Nieslony, W. Grzesik, M. Bartoszuk, W. Habrat, Analysis of mechanical characteristics of face milling process of ti6al4v alloy using experimental and simulation data, J Mach Eng 16(3) (2016) 58-66.

Google Scholar

[12] M. Hadad, A. Sharbati, Thermal Aspects of Environmentally Friendly-MQL Grinding Process, Procedia CIRP 40 (2016) 509-515.

DOI: 10.1016/j.procir.2016.01.125

Google Scholar

[13] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review, J. Clean. Prod. 127 (2016) 1-18.

DOI: 10.1016/j.jclepro.2016.03.146

Google Scholar

[14] A.A. Minea, Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches, Int. J. Heat Mass Tran. 104 (2017) 852-860.

DOI: 10.1016/j.ijheatmasstransfer.2016.09.012

Google Scholar