[1]
T. Polcar and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings, Surf. Coat. Technol., vol. 206, no. 6, p.1244–1251, Dec. (2011).
DOI: 10.1016/j.surfcoat.2011.08.037
Google Scholar
[2]
X. Ding, X. T. Zeng, and Y. C. Liu, Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc, Thin Solid Films, vol. 519, no. 6, p.1894–1900, Jan. (2011).
DOI: 10.1016/j.tsf.2010.10.022
Google Scholar
[3]
J. Y. Cheong, X. Z. Ding, B. K. Tay, and X. T. Zeng, Thermal Stablility and Oxidation Resistance of CrAlSiN Nano-Structured Coatings Deposited by Lateral Rotating Cathode Arc, Key Eng. Mater., vol. 447–448, p.725–729, Sep. (2010).
DOI: 10.4028/www.scientific.net/kem.447-448.725
Google Scholar
[4]
S. K. Kim, V. V. Le, P. V. Vinh, and J. W. Lee, Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films, Surf. Coat. Technol., vol. 202, no. 22–23, p.5400–5404, Aug. (2008).
DOI: 10.1016/j.surfcoat.2008.06.019
Google Scholar
[5]
C. Tritremmel, R. Daniel, M. Lechthaler, P. Polcik, and C. Mitterer, Influence of Al and Si content on structure and mechanical properties of arc evaporated Al–Cr–Si–N thin films, Thin Solid Films, vol. 534, p.403–409, May (2013).
DOI: 10.1016/j.tsf.2013.03.017
Google Scholar
[6]
E. Uhlmann, J. A. Oyanedel Fuentes, R. Gerstenberger, and H. Frank, nc-AlTiN/a-Si3N4 and nc-AlCrN/a-Si3N4 nanocomposite coatings as protection layer for PCBN tools in hard machining, Surf. Coat. Technol., vol. 237, p.142–148, Dec. (2013).
DOI: 10.1016/j.surfcoat.2013.09.017
Google Scholar
[7]
S.B. Abusuilik. Pre-, intermediate, and post-treatment of hard coatings to improve their performance for forming and cutting tools. Surf. Coat. Technol., 284 (2015), p.384–395.
DOI: 10.1016/j.surfcoat.2015.07.003
Google Scholar
[8]
S. Saketi, J. Östby, M. Olsson. Pre-, Influence of tool surface topography on the material transfer tendency and tool wear in the turning of 316L stainless steel. Wear., Vol. 368-369 (2016), p.239–252.
DOI: 10.1016/j.wear.2016.09.023
Google Scholar
[9]
M. Zetek, I. Zetková. Increasing of the Cutting Tool Efficiency from Tool Steel by Using Fluidization Method. Procedia Engineering., 100 ( 2015 ) p.912 – 917.
DOI: 10.1016/j.proeng.2015.01.449
Google Scholar
[10]
M. Bar-Hen, I. Etsion. Experimental study of the effect of coating thickness and substrate roughness on tool wear during turning. Tribology International. 110 (2017), p.341–347.
DOI: 10.1016/j.triboint.2016.11.011
Google Scholar
[11]
Vopát, T., Beňo, M., et al. Errors in turning slender workpieces. In EQ-2014: In the framework of International Forum Education Quality - 2014,. Proceedings. April 23, 2014, Izhevsk, Russia. pp.256-260.
Google Scholar
[12]
PRAMET TOOLS. Chipforming. Pramet's Research and Development (2015).
Google Scholar
[13]
M. Ahlgren and H. Blomqvist, Influence of bias variation on residual stress and texture in TiAlN PVD coatings, Surf. Coat. Technol., vol. 200, no. 1–4, p.157–160, Oct. (2005).
DOI: 10.1016/j.surfcoat.2005.02.078
Google Scholar
[14]
J. Musil, Hard and superhard nanocomposite coatings, Surf. Coat. Technol., vol. 125, no. 1, p.322–330, (2000).
Google Scholar