[1]
A. Boglietti, A. Cavagnino , D.A. Staton, M. Popescu, Experimental assessment of end region cooling arrangements in induction motor endwindings, IET Electric Power Applications, 5(2) (2011) 203-209.
DOI: 10.1049/iet-epa.2010.0176
Google Scholar
[2]
A. Cavagnino, Z. Li, A. Tenconi, S. Vaschetto, Integrated generator for more electric engine: Design and testing of a scaled-size prototype, IEEE Transactions on Industry Applications, 49(5) (2013) 2034-(2043).
DOI: 10.1109/tia.2013.2259785
Google Scholar
[3]
M.V.D. Geest, H. Polinder, J.A. Ferreira, D. Zeilstra, Machine selection and initial design of an aerospace starter/generator, 2013 IEEE International Electric Machines and Drives Conference, Chicago, United States, (2013).
DOI: 10.1109/iemdc.2013.6556253
Google Scholar
[4]
M. Tosetti, P. Maggiore, A. Cavagnino, S. Vaschetto, Conjugate heat transfer analysis of integrated brushless generators for more electric engines, IEEE Transactions on Industry Applications, 50(4) (2014) 2467-2475.
DOI: 10.1109/tia.2013.2296657
Google Scholar
[5]
J. Wang, K. Atallah, Z.Q. Zhu, D. Howe, Modular three-phase permanent-magnet brushless machines for in-wheel applications, IEEE Transactions on Vehicular Technology, 57(5) (2008) 2714-2720.
DOI: 10.1109/tvt.2007.914476
Google Scholar
[6]
V.A. Balagurov, Elektricheskie generatory s postoiannymi magnitami, Energoatomizdat, Moscow, (1988).
Google Scholar
[7]
V.A. Privezencev, I.B. Peshkov, Obmotochnye i montazhnye provoda, Jenergija, Moscow, (1971).
Google Scholar
[8]
Information on http: /laborant. ru/eltech/19/1/1/17-98. html.
Google Scholar
[9]
A.A. Preobrazhenskij, E.G. Bishrid, Magnitnye materialy i jelementy, Moscow, (1986).
Google Scholar
[10]
A.I. Voldek, Jelektricheskie mashiny: Uchebnik dlja jelektrotehnicheskih special'nostej vuzov, Jenergija, Leningrad, (1978).
Google Scholar
[11]
A.A. Preobrazhenskij, Magnitnye materialy, Vysshaja shkola, Moscow, (1965).
Google Scholar
[12]
V. Vavilov, A. Gerasin, F. Ismagilov, I. Khayrullin, An Algorithm for Controlling Hybrid Magnetic Bearings Using the Magnetic Field Pattern, Journal of Computer and Systems Sciences International, 52(5) (2013) 794-799.
DOI: 10.1134/s1064230713050134
Google Scholar
[13]
W. Jiabin, W. Weiya, W. Geraint, Howe Design a Miniature Permanent–Magnet Generanor and Enrgy Strogate Systems, IEEE Transactions on industrial. 52(5) (2005) 1383-1389.
Google Scholar
[14]
F.R. Ismagilov, I. Kh. Khairullin, V.E. Vavilov, A. Kh. Miniyarov, N.G. Tarasov, Vliianie reaktsii iakoria na kharakteristiki elektromekhanicheskikh preobrazovatelei energii s vysokokoertsitivnymi postoiannymi magnitami, Vestnik mashinostroeniia, 1 (2016).
Google Scholar
[15]
Je.G. Korolev, V.S. Kolonchin, Sposob upravlenija magnitnym potokom, sozdavaemym postojannym magnitom, i ustrojstvo dlja ego osushhestvlenija, Patent RF 2092922, (1996).
Google Scholar
[16]
A.N. Ledovskii, Elektricheskie mashiny s vysokokoertsitivnymi postoiannymi magnitami, Energoatomizdat, Mosocw, (1985).
Google Scholar
[17]
Temperature Effects on Magnet Output, Arnold the magnetic product group of TN0303, (2003).
Google Scholar
[18]
F.R. Ismagilov, I.X. Hajrullin, V.E. Vavilov, Jelektromehanicheskie sistemy s vysokokojercitivnymi postojannymi magnitami, Mashinostroenie, (2014).
Google Scholar
[19]
V.A. Balagurov, Jelektricheskie generatory s postojannymi magnitami, Jenergoatomizdat, Moscow, (1988).
Google Scholar
[20]
D.A. But, Beskontaktnye jelektricheskie mashiny, Vysshaja shkola, Moscow, (1990).
Google Scholar