Simple Universal Kelvin Equation Valid in Critical Point Vicinity and its Application to Carbon Dioxide Capillary Condensation in Mesoporous Silica

Article Preview

Abstract:

A new simple universal form of the Kelvin equation that can be used even near the gas-liquid phase transition critical point is shown. The correction of the chemical potential, pressure, and density outside the porous medium is presented and taken into account for the CO2 meniscus curvature radius calculation at capillary condensation in mesoporous silica MCM-41, known [1] for its wide range of applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

392-397

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Schwarz, C.I. Contescu, K. Putyera, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York, 3 (2004).

Google Scholar

[2] R. von Helmholtz, Untersuchungen uber Dampfe und Nebel, besonders über solche von Losungen, Annalen der Physik, 263 (1886) 508-543.

DOI: 10.1002/andp.18862630403

Google Scholar

[3] W. Thomson, On the equilibrium of vapour at a curved surface of liquid, Proc. Roy. Soc. Edinburgh, 7 (1870) 63-68.

Google Scholar

[4] W. Thomson, On the equilibrium of vapour at a curved surface of liquid, Philosophical Magazine Series 4, 42 (1871) 448-452.

Google Scholar

[5] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Science and Porosity, Academic Press, New York, (1982).

Google Scholar

[6] A.A. Valeev, Simple Kelvin equation applicable in the critical point vicinity, Eur. J. Nat. Hist., 5 (2014)13-14.

Google Scholar

[7] A.O. Parry, R. Evans, Universal fluctuation-induced corrections to the Kelvin equation for capillary condensation, J. Phys. A: Math. Gen., 25 (1992) 275-284.

DOI: 10.1088/0305-4470/25/2/011

Google Scholar

[8] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York, (2001).

Google Scholar

[9] R.C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys., 17 (1949) 333-337.

Google Scholar

[10] S.P. Tan, M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibria, 393 (2015) 48-63.

DOI: 10.1016/j.fluid.2015.02.028

Google Scholar

[11] E. Barsotti, S. P. Tan, S. Saraji, M. Piri, J. -H. Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184 (2016) 344-361.

DOI: 10.1016/j.fuel.2016.06.123

Google Scholar

[12] V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, CARS diagnostics of molecular media under nanoporous confinement, Laser Physics, 18 (2008) 1451-1458.

DOI: 10.1134/s1054660x08120128

Google Scholar

[13] V.G. Arakcheev, S.A. Dubyanskiy, V.B. Morozov, A.N. Olenin, V.G. Tunkin, A.A. Valeev, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Vibrational line shapes of liquid and subcritical carbon dioxide in nano-pores, Journal Of Raman Spectroscopy, 39 (2008).

DOI: 10.1002/jrs.1974

Google Scholar

[14] V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Spectral characteristics of subcritical carbon dioxide in nanopores, Russian Journal of Physical Chemistry B, 3 (2009) 1062-1066.

DOI: 10.1134/s1990793109070045

Google Scholar

[15] V. Arakcheev , V. Morozov , A. Valeev, CARS diagnostics of phase transitions of molecular media confined in nanopores, European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Article number 5196584, (2009).

DOI: 10.1109/cleoe-eqec.2009.5196584

Google Scholar

[16] V.G. Arakcheev, A.A. Valeev, V.B. Morozov, I.R. Farizanov, Phase behavior of the molecular medium in nanopores and vibrational spectra structure transformation, Moscow University Physics Bulletin, 66 (2011) 147-154.

DOI: 10.3103/s0027134911020032

Google Scholar

[17] O.V. Andreeva, V.G. Arakcheev, V.B. Morozov, A.A. Valeev, V.N. Bagratashvili, V.K. Popov, CARS diagnostics of fluid adsorption and condensation in small mesopores, Journal of Raman Spectroscopy, 42 (2011) 1747-1753.

DOI: 10.1002/jrs.2979

Google Scholar

[18] K. Morishige and Y. Nakamura, Nature of adsorption and desorption branches in cylindrical pores, Langmuir, 20 (2004) 4503-4506.

DOI: 10.1021/la030414g

Google Scholar

[19] A.B. Shelekhin, A.G. Dixon, Y.H. Ma, Theory of gas diffusion and permeation in inorganic molecular-sieve membranes, AIChE J., 41 (1995) 58-67.

DOI: 10.1002/aic.690410107

Google Scholar

[20] R.T. Jacobsen, R.B. Stewart, Thermodynamic properties of nitrogen including liquid and vapor phases from 63K to 2000K with pressures to 10, 000 bar, J. Phys. Chem. Ref. Data, 2 (1972) 757-922.

DOI: 10.1063/1.3253132

Google Scholar

[21] J.F. Ely, W.M. Haynes, B.C. Bain, Isochoric (p, Vm, T) measurements on CO2, and on (0. 982 CO2+0. 018N2) from 250 to 330 K at pressures to 35 MPa, J. Chem. Thermodynamics, 21 (1989) 879-894.

DOI: 10.1016/0021-9614(89)90036-0

Google Scholar

[22] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data, 25 (1996) 1509-1596.

DOI: 10.1063/1.555991

Google Scholar