[1]
J.A. Schwarz, C.I. Contescu, K. Putyera, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York, 3 (2004).
Google Scholar
[2]
R. von Helmholtz, Untersuchungen uber Dampfe und Nebel, besonders über solche von Losungen, Annalen der Physik, 263 (1886) 508-543.
DOI: 10.1002/andp.18862630403
Google Scholar
[3]
W. Thomson, On the equilibrium of vapour at a curved surface of liquid, Proc. Roy. Soc. Edinburgh, 7 (1870) 63-68.
Google Scholar
[4]
W. Thomson, On the equilibrium of vapour at a curved surface of liquid, Philosophical Magazine Series 4, 42 (1871) 448-452.
Google Scholar
[5]
S.J. Gregg, K.S.W. Sing, Adsorption, Surface Science and Porosity, Academic Press, New York, (1982).
Google Scholar
[6]
A.A. Valeev, Simple Kelvin equation applicable in the critical point vicinity, Eur. J. Nat. Hist., 5 (2014)13-14.
Google Scholar
[7]
A.O. Parry, R. Evans, Universal fluctuation-induced corrections to the Kelvin equation for capillary condensation, J. Phys. A: Math. Gen., 25 (1992) 275-284.
DOI: 10.1088/0305-4470/25/2/011
Google Scholar
[8]
B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York, (2001).
Google Scholar
[9]
R.C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys., 17 (1949) 333-337.
Google Scholar
[10]
S.P. Tan, M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibria, 393 (2015) 48-63.
DOI: 10.1016/j.fluid.2015.02.028
Google Scholar
[11]
E. Barsotti, S. P. Tan, S. Saraji, M. Piri, J. -H. Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184 (2016) 344-361.
DOI: 10.1016/j.fuel.2016.06.123
Google Scholar
[12]
V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, CARS diagnostics of molecular media under nanoporous confinement, Laser Physics, 18 (2008) 1451-1458.
DOI: 10.1134/s1054660x08120128
Google Scholar
[13]
V.G. Arakcheev, S.A. Dubyanskiy, V.B. Morozov, A.N. Olenin, V.G. Tunkin, A.A. Valeev, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Vibrational line shapes of liquid and subcritical carbon dioxide in nano-pores, Journal Of Raman Spectroscopy, 39 (2008).
DOI: 10.1002/jrs.1974
Google Scholar
[14]
V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Spectral characteristics of subcritical carbon dioxide in nanopores, Russian Journal of Physical Chemistry B, 3 (2009) 1062-1066.
DOI: 10.1134/s1990793109070045
Google Scholar
[15]
V. Arakcheev , V. Morozov , A. Valeev, CARS diagnostics of phase transitions of molecular media confined in nanopores, European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Article number 5196584, (2009).
DOI: 10.1109/cleoe-eqec.2009.5196584
Google Scholar
[16]
V.G. Arakcheev, A.A. Valeev, V.B. Morozov, I.R. Farizanov, Phase behavior of the molecular medium in nanopores and vibrational spectra structure transformation, Moscow University Physics Bulletin, 66 (2011) 147-154.
DOI: 10.3103/s0027134911020032
Google Scholar
[17]
O.V. Andreeva, V.G. Arakcheev, V.B. Morozov, A.A. Valeev, V.N. Bagratashvili, V.K. Popov, CARS diagnostics of fluid adsorption and condensation in small mesopores, Journal of Raman Spectroscopy, 42 (2011) 1747-1753.
DOI: 10.1002/jrs.2979
Google Scholar
[18]
K. Morishige and Y. Nakamura, Nature of adsorption and desorption branches in cylindrical pores, Langmuir, 20 (2004) 4503-4506.
DOI: 10.1021/la030414g
Google Scholar
[19]
A.B. Shelekhin, A.G. Dixon, Y.H. Ma, Theory of gas diffusion and permeation in inorganic molecular-sieve membranes, AIChE J., 41 (1995) 58-67.
DOI: 10.1002/aic.690410107
Google Scholar
[20]
R.T. Jacobsen, R.B. Stewart, Thermodynamic properties of nitrogen including liquid and vapor phases from 63K to 2000K with pressures to 10, 000 bar, J. Phys. Chem. Ref. Data, 2 (1972) 757-922.
DOI: 10.1063/1.3253132
Google Scholar
[21]
J.F. Ely, W.M. Haynes, B.C. Bain, Isochoric (p, Vm, T) measurements on CO2, and on (0. 982 CO2+0. 018N2) from 250 to 330 K at pressures to 35 MPa, J. Chem. Thermodynamics, 21 (1989) 879-894.
DOI: 10.1016/0021-9614(89)90036-0
Google Scholar
[22]
R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data, 25 (1996) 1509-1596.
DOI: 10.1063/1.555991
Google Scholar