[1]
I.I. Tsypin, White wear-resistant cast irons: Structure and properties, Metallurgiya Publ., Moscow, (1983).
Google Scholar
[2]
A.A. Zhukov, G.I. Sil'man, M.S. Frol'tsov, Wear-resistant castings of complex alloy white cast irons, Mashinostroenie Publ., Moscow, (1984).
Google Scholar
[3]
D.A. Mirzaev, N.M. Mirzaeva, A.N. Emelyushin, Ledeburite alloys for tools for machining of graphite, Metal Science and Heat Treatment. 30 (1988) 519-523.
DOI: 10.1007/bf00777442
Google Scholar
[4]
A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, N.V. Koptseva, Metal science, physics and mechanics applied to working of graphitized materials. Structure and wear resistance of tools. MGTU Publ., Magnitogorsk, (2002).
Google Scholar
[5]
A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, K. Yu. Okishev, O.S. Molochkova, Cast tools of chromium cast irons. Structure and properties. MGTU Publ., Magnitogorsk, (2016).
Google Scholar
[6]
K. Yu. Okishev, A.S. Sozykina, Structure and hardness changes with hardening temperature in high-chromium steels and cast irons, Bull. of the South Ural State Univ. Ser. Metallurgy. 14(16) (2011) 67-70.
Google Scholar
[7]
F. Maratray, R. Usseglio-Nanot, Atlas: courbes de tranformation de fontes blanches au chrome et au chrome-molybdène, Climax Molybdenum S.A., Paris, (1970).
Google Scholar
[8]
A.S. Sozykina, K.Y. Okishev, A.G. Grebenshchikova, D.A. Mirzaev, Kinetic description of (Cr, Fe)7C3 carbide dissolution in austenite of high-carbon Fe–Cr–C ternary alloy, Materials Science Forum. 870 (2016) 409-415.
DOI: 10.4028/www.scientific.net/msf.870.409
Google Scholar
[9]
B. -J. Lee, On the stability of Cr carbides, CALPHAD 16 (1992) 121-149.
Google Scholar
[10]
D.A. Mirzaev, K. Yu. Okishev, K.D. Mirzaeva, Analytical solution of the problem of diffusional transformation under continuous cooling condition based on isothermal transformation diagram data, Materials Performance and Characterization 2 (2013).
DOI: 10.1520/mpc20120023
Google Scholar
[11]
I.L. Mirkin, Investigation of eutectoid crystallization of steel, Structure and properties of steels and alloys. XVIII collection of works of the Moscow Steel Institute, Moscow, (1941) 5-158.
Google Scholar
[12]
K. Russev, S. Budurov, D. Danailov, T. Lazarowa, Uber die Kinetik der perlitischen Umwandlung eines eutektoiden Stahles bei kontinuierlicher Abkühlung, Zeitschrift für Metallkunde. 65 (1974) 686-691.
DOI: 10.1515/ijmr-1974-651106
Google Scholar
[13]
M. Umemoto, M. Komatsubara, I. Tamura, Effect of austenite grain size on the hardenability of eutectoid steel, Journal of the Iron and Steel Institute of Japan. 66 (1980) 400-409.
DOI: 10.2355/tetsutohagane1955.66.3_400
Google Scholar
[14]
J.V. Bee, R.W.K. Honeycombe, The isothermal decomposition of austenite in a high purity iron-chromium binary alloy, Metallurgical Transactions. A 9 (1978) 587-593.
DOI: 10.1007/bf02646416
Google Scholar
[15]
M.J. Whiting, A reappraisal of kinetic data for the growth of pearlite in high purity Fe–C eutectoid alloys, Scripta Materialia. 43 (2000) 969-975.
DOI: 10.1016/s1359-6462(00)00464-4
Google Scholar