Isothermal Pearlite Formation Kinetics in High-Chromium Cast Irons without Additional Alloying

Article Preview

Abstract:

A model of isothermal pearlite reaction kinetics in high-carbon ternary Fe–Cr–C alloys (cast irons) containing (Cr, Fe)7C3 carbide phase is presented. The model is based on traditional Avrami approach completed with a simple type temperature dependence of K coefficient. The model parameters for individual alloys were determined from F. Maratray and R. Usseglio-Nanot’s experimental data covering composition range from 2.1 to 4.3 %C and from 12 to 26 %Cr. The dependence of parameters (Avrami exponent n, activation energy U and time-scale constant C) on gamma phase composition by the end of austenitization (calculated with account for kinetics of carbide dissolution) is determined. The model thus permits to calculate the isothermal pearlite Ccurve (TTT diagram) for an alloy of arbitrary composition after given austenitization regime. The comparison of calculation results to experimental data shows their sufficient correlation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

884-888

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.I. Tsypin, White wear-resistant cast irons: Structure and properties, Metallurgiya Publ., Moscow, (1983).

Google Scholar

[2] A.A. Zhukov, G.I. Sil'man, M.S. Frol'tsov, Wear-resistant castings of complex alloy white cast irons, Mashinostroenie Publ., Moscow, (1984).

Google Scholar

[3] D.A. Mirzaev, N.M. Mirzaeva, A.N. Emelyushin, Ledeburite alloys for tools for machining of graphite, Metal Science and Heat Treatment. 30 (1988) 519-523.

DOI: 10.1007/bf00777442

Google Scholar

[4] A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, N.V. Koptseva, Metal science, physics and mechanics applied to working of graphitized materials. Structure and wear resistance of tools. MGTU Publ., Magnitogorsk, (2002).

Google Scholar

[5] A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, K. Yu. Okishev, O.S. Molochkova, Cast tools of chromium cast irons. Structure and properties. MGTU Publ., Magnitogorsk, (2016).

Google Scholar

[6] K. Yu. Okishev, A.S. Sozykina, Structure and hardness changes with hardening temperature in high-chromium steels and cast irons, Bull. of the South Ural State Univ. Ser. Metallurgy. 14(16) (2011) 67-70.

Google Scholar

[7] F. Maratray, R. Usseglio-Nanot, Atlas: courbes de tranformation de fontes blanches au chrome et au chrome-molybdène, Climax Molybdenum S.A., Paris, (1970).

Google Scholar

[8] A.S. Sozykina, K.Y. Okishev, A.G. Grebenshchikova, D.A. Mirzaev, Kinetic description of (Cr, Fe)7C3 carbide dissolution in austenite of high-carbon Fe–Cr–C ternary alloy, Materials Science Forum. 870 (2016) 409-415.

DOI: 10.4028/www.scientific.net/msf.870.409

Google Scholar

[9] B. -J. Lee, On the stability of Cr carbides, CALPHAD 16 (1992) 121-149.

Google Scholar

[10] D.A. Mirzaev, K. Yu. Okishev, K.D. Mirzaeva, Analytical solution of the problem of diffusional transformation under continuous cooling condition based on isothermal transformation diagram data, Materials Performance and Characterization 2 (2013).

DOI: 10.1520/mpc20120023

Google Scholar

[11] I.L. Mirkin, Investigation of eutectoid crystallization of steel, Structure and properties of steels and alloys. XVIII collection of works of the Moscow Steel Institute, Moscow, (1941) 5-158.

Google Scholar

[12] K. Russev, S. Budurov, D. Danailov, T. Lazarowa, Uber die Kinetik der perlitischen Umwandlung eines eutektoiden Stahles bei kontinuierlicher Abkühlung, Zeitschrift für Metallkunde. 65 (1974) 686-691.

DOI: 10.1515/ijmr-1974-651106

Google Scholar

[13] M. Umemoto, M. Komatsubara, I. Tamura, Effect of austenite grain size on the hardenability of eutectoid steel, Journal of the Iron and Steel Institute of Japan. 66 (1980) 400-409.

DOI: 10.2355/tetsutohagane1955.66.3_400

Google Scholar

[14] J.V. Bee, R.W.K. Honeycombe, The isothermal decomposition of austenite in a high purity iron-chromium binary alloy, Metallurgical Transactions. A 9 (1978) 587-593.

DOI: 10.1007/bf02646416

Google Scholar

[15] M.J. Whiting, A reappraisal of kinetic data for the growth of pearlite in high purity Fe–C eutectoid alloys, Scripta Materialia. 43 (2000) 969-975.

DOI: 10.1016/s1359-6462(00)00464-4

Google Scholar