[1]
V.V. Atuchin, D.A. Vinnik, T.A. Gavrilova, S.A. Gudkova, L.I. Isaenko, X. Jiang, L.D. Pokrovsky, I.P. Prosvirin, L.S. Mashkovtseva, Z. Lin, Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite, J. Phys. Chem. C 120 (2016).
DOI: 10.1021/acs.jpcc.5b12243
Google Scholar
[2]
E.S. Zhukova, A.S. Mikheykin, V.I. Torgashev, A.A. Bush, Y.I. Yuzyuk, A.E. Sashin, A.S. Prokhorov, M. Dressel, B.P. Gorshunov, Crucial influence of crystal site disorder on dynamical spectral response in artificial magnetoplumbites, Solid State Sci. 62 (2016).
DOI: 10.1016/j.solidstatesciences.2016.10.012
Google Scholar
[3]
K. Sun, Q. Li, H. Guo, Y. Yang, Z. Yu, Z. Xu, X. Jiang, Z. Lan, L. Li, Magnetic property and stress study of barium hexaferrite thin films with different structures, J. Alloys Compd. 663 (2016) 645-650.
DOI: 10.1016/j.jallcom.2015.12.193
Google Scholar
[4]
T. Li, Y. Li, R. Wu, H. Zhou, X. Fang, S. Su, A. Xia, C. Jin, X. Liu, A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: Structural and magnetic properties, J. Magn. Magn. Mater. 393 (2015) 325-330.
DOI: 10.1016/j.jmmm.2015.05.088
Google Scholar
[5]
J. Liu, Y. Zeng, Z. Su, M. Geiler, Y. Chen, V.G. Harris, Magnetic properties of a highly textured barium hexaferrite quasi-single crystal and its application in low-field biased circulators, J. Electr. Mat. 45(10) (2016) 5069-5073.
DOI: 10.1007/s11664-016-4699-7
Google Scholar
[6]
H. Lou, J. Wang, B. Xu, G. Wang, Y. Hou, H. Gao, W. Ye, Effects of Mg or Sr doping on the intrinsic characteristics and absorption properties of micro-nano BaFe12O19 hollow multiphase ceramic microspheres, J. Magn. Magn. Mater. 374 (2015) 530-538.
DOI: 10.1016/j.jmmm.2014.08.036
Google Scholar
[7]
S.S.S. Afghahi, M. Jafarian, Y. Atassi. Novel approach for designing a thin and broadband microwave absorber in Ku band based on substituted M-hexaferrites, J. Magn. Magn. Mater. 419 (2016) 62-67.
DOI: 10.1016/j.jmmm.2016.06.003
Google Scholar
[8]
M.H. Shams, A.S.H. Rozatian, M.H. Yousefi, J. Valíček, V. Šepelák. Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high frequency ferromagnetic properties of barium hexaferrite, J. Magn. Magn. Mater. 399 (2016) 10-18.
DOI: 10.1016/j.jmmm.2015.08.099
Google Scholar
[9]
A.B. Ustinov, A.S. Tatarenko, G. Srinivasan, A.M. Balbashov, Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices, J. Appl. Phys. 105 (2009) 105-108.
DOI: 10.1063/1.3067759
Google Scholar
[10]
D.A. Vinnik, A. B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals. Ceram. Int. 41 (2015).
DOI: 10.1016/j.ceramint.2015.06.105
Google Scholar
[11]
Y. Li, A. Xia, C. Jin, Synthesis, structure and magnetic properties of hexagonal BaFe12O19 ferrite obtained via a hydrothermal method, J. Mat. Sci.: Mat. Electronics, 27(10) (2016) 10864-10868.
DOI: 10.1007/s10854-016-5195-9
Google Scholar
[12]
I.A. Auwal, A. Baykal, S. Güner, H. Sözeri. Magneto-optical properties of SrBixLaxFe12-2xO19 (0. 0≤x≤0. 5) hexaferrites by sol-gel auto-combustion technique, Ceram. Int. 43(1) (2017) 1298-1303.
DOI: 10.1016/j.ceramint.2016.10.080
Google Scholar
[13]
S.S.S. Afghahi, M. Jafarian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12-4xO19 (X = Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band, J. Magn. Magn. Mater. 406 (2016) 184-191.
DOI: 10.1016/j.jmmm.2016.01.020
Google Scholar
[14]
R. Joshi, C. Singh, D. Kaur, H. Zaki, S. Bindra Narang, R. Jotania, S.R. Mishra, J. Singh, P. Dhruv, M. Ghimire. Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method, J. Alloys Compd. 695 (2017).
DOI: 10.1016/j.jallcom.2016.10.192
Google Scholar
[15]
S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, E.L. Trukhanova, V.O. Natarov, A.M. Balagurov. Thermal evolution of exange interactions in lightly doped barium hexaferrites, J. Magn. Magn. Mater. 426 (2017).
DOI: 10.1016/j.jmmm.2016.10.151
Google Scholar
[16]
M.S.E. Shafie, M. Hashim, I. Ismail , S. Kanagesan, M.I. Fadzidah, I.R. Idza, A. Hajalilou, R. Sabbaghizadeh, Magnetic M-H loops family characteristics in the microstructure evolution of BaFe12O19, J. Mat. Sci.: Mat. Electronics, 25 (2014).
DOI: 10.1007/s10854-014-2090-0
Google Scholar
[17]
C. Wu, Z. Yu, Y. Yang, K. Sun, J. Nie, Y. Liu, X. Jiang, Z. Lan, Computational and experimental study on the cation distribution of La-Cu substituted barium hexaferrites, J. Alloys Compd. 664 (2016) 406-410.
DOI: 10.1016/j.jallcom.2015.12.251
Google Scholar
[18]
K.K. Kefeni, T.A.M. Msagati, B.B. Mamba. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device, Mat. Sci. Eng. B 215 (2017) 37-55.
DOI: 10.1016/j.mseb.2016.11.002
Google Scholar
[19]
J.G. Fisher, H. Sun, Y. -G. Kook, J. -S. Kim, P.G. Le, Growth of single crystals of BaFe12O19 by solid state crystal growth, J. Magn. Magn. Mater. 416 (2016) 384-390.
DOI: 10.1016/j.jmmm.2016.04.079
Google Scholar
[20]
B.C. Brightlin, S. Balamurugan. Magnetic, micro-structural, and optical properties of hexaferrite, BaFe12O19 materials synthesized by salt flux-assisted method, J. Supercond. Nov. Magn. 30(1) (2017) 215-225.
DOI: 10.1007/s10948-016-3703-z
Google Scholar
[21]
R.J. Gambino, F. Leonhard, Growth of barium ferrite single crystals, J. Am. Ceram. Soc. 44 (1961) 221-224.
DOI: 10.1111/j.1151-2916.1961.tb15364.x
Google Scholar
[22]
A.M. Balbashov, S.K. Egorov, Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating, J. Crystal Growth 52 (1981) 498-504.
DOI: 10.1016/0022-0248(81)90328-6
Google Scholar
[23]
R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science 57 (2012) 1191–1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar