Thermodynamic Analysis of Copper Melt Deoxidation with Lanthanum

Article Preview

Abstract:

Using rare earth metals as deoxidizers is an efficient way of getting highly deoxidized copper melt required for certain bronzes production. Thermodynamic modeling of phase equilibria in the Cu–La–O system in the temperature range of 1100–1300 °С was performed to assess a possible depth of copper melt deoxidation with lanthanum, and also to determine the resulting oxide phases. During the experimental part of the work, Cu–La–O system metal samples were melted and then studied with the JEOL JSM 6460-LV scanning electron microscope equipped with the energy-dispersive spectrometer providing electron microprobe analysis to specify formed nonmetallic inclusion type.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

900-905

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.S. Kulikov, Metal Deoxidation, Metallurgy Publ., Moscow, (1975).

Google Scholar

[2] A.V. Kurdyumov, M.V. Pikunov, V.M. Chursin, Ye.L. Bibikov, Production of Castings from Non-ferrous Metal Alloys, Metallurgy Publ., Moscow, (1986).

Google Scholar

[3] V.S. Sudavtsova, M.V. Mikhailovskaya, A.V. Kalmykov, Influence of lithium, boron, magnesium and yttrium on oxygen activity in the liquid copper, Melts. 1 (1987) 43-46.

Google Scholar

[4] H. Okamoto, Cu–La (copper–lanthanum), Journal of Phase Equilibria. 22 (2001) 594-595.

DOI: 10.1007/s12385-001-0090-2

Google Scholar

[5] J.P. Neumann, T. Zhong, Y.A. Chang, The Cu–O (copper–oxygen) system, Bulletin of Alloy Phase Diagrams. 5 (1984) 136-140.

DOI: 10.1007/bf02868948

Google Scholar

[6] A.N. Grundy, B. Hallstedt, L.J. Gauckler, Thermodynamic assessment of the lanthanum-oxygen system, Journal of Phase Equilibria. 22 (2001) 105-113.

DOI: 10.1361/105497101770338950

Google Scholar

[7] H. Rickert, H. Wagner, Elektrochemische messung der sauerstoff-aktivität in flüssingem kupfer, Electrochimica Acta. 11 (1966) 83-91.

DOI: 10.1016/0013-4686(66)85009-0

Google Scholar

[8] P. Taskinen, Thermodynamics of liquid copper–oxygen alloys at 1065–1450 °С, Scandinavian Journal of Metallurgy. 13 (1984) 75-82.

Google Scholar

[9] Y. Kayahara, K. Ono, T. Oishi, J. Moriyama, Thermodynamic study of the liquid Cu–O system, Transactions of the Japan Institute of Metals. 22 (1981) 493-500.

DOI: 10.2320/matertrans1960.22.493

Google Scholar

[10] A.N. Petrov, V.A. Cherepanov, A. Yu. Zuyev, V.M. Zhukovsky, Thermodynamic stability of ternary oxides in Ln–M–O (Ln = La, Pr, Nd; M = Co, Ni, Cu) systems, Journal of Solid State Chemistry. 77 (1988) 1-14.

DOI: 10.1016/0022-4596(88)90083-7

Google Scholar

[11] R.J. Cava, H.W. Zandbergen, A.P. Ramirez, H. Takagi, C.T. Chen, J.J. Krajewski, W.F. Peck, Jr., J.V. Waszczak, G. Meigs, R.S. Roth, L.F. Schneemeyer, LaCuO2. 5+x and YCuO2. 5+x delafossites: materials with triangular Cu2+δ planes, Journal of Solid State Chemistry. 104 (1993).

DOI: 10.1006/jssc.1993.1179

Google Scholar

[12] R. Kucharski, Z. Gontarz, Reduction and oxidation of simple oxocuprates, Journal of Thermal Analysis and Calorimetry. 60 (2000) 219-227.

Google Scholar

[13] K.T. Jacob, K.P. Jayadevan, Phase relations in the Cu–La–O system and thermodynamic properties of CuLaO2 and CuLa2O4, Journal of Materials Science. 37 (2002) 1611-1620.

Google Scholar

[14] G.G. Mikhailov, B.I. Leonovich, Yu.S. Kuznetsov, Thermodynamics of Metallurgical Processes and Systems, Moscow Institute of Steel and Alloys Publishing house, Moscow, (2009).

Google Scholar

[15] O.A. Mordovin, N.I. Timofeyeva, L.N. Drozdova, Definition of melting temperature of rare earth element oxides, Inorganic Materials. 3 (1967) 187-189.

Google Scholar

[16] T. Noguchi, M. Mizuno, Freezing points of lanthanides oxides measured with a solar furnace, Solar Energy. 11 (1967) 90-94.

DOI: 10.1016/0038-092x(67)90047-3

Google Scholar

[17] F. Wehner, E. -Th. Henig, H.L. Lukas, A pyrometric differential thermal analyser for high temperatures, Thermochimica Acta. 20 (1977) 17-22.

DOI: 10.1016/0040-6031(77)85034-x

Google Scholar

[18] S.V. Ushakov, A. Navrotsky, Direct measurements of fusion and phase transition enthalpies in lanthanum oxide, Journal of Materials Research. 26 (2011) 845-847.

DOI: 10.1557/jmr.2010.79

Google Scholar

[19] A.V. Shevthenko, L.M. Lopato, DTA method application to the highest refractory oxide systems investigation, Thermochimica Acta. 93 (1985) 537-540.

DOI: 10.1016/0040-6031(85)85135-2

Google Scholar

[20] Chemical Encyclopedia, Vol. 2, Soviet Encyclopedia Publ., Moscow, (1990).

Google Scholar

[21] O.V. Samoilova, L.A. Makrovets, G.G. Mikhailov, E.A. Trofimov, Thermodynamic analysis of the Cu–Si–Ni–O system, Russian Journal of Non-Ferrous Metals. 53 (2012) 223-228.

DOI: 10.3103/s1067821212030182

Google Scholar

[22] M.A. Turchanin, I.V. Nikolaenko, G.I. Batalin, The studies of thermodynamic features of liquid alloys of copper with lanthanum and cerium, Melts. 2 (1988) 25-28.

Google Scholar

[23] B.V. Linchevskiy, Thermodynamics and Kinetics of Gases Interaction with Liquid Metals, Metallurgy Publ., Moscow, (1986).

Google Scholar

[24] M.A. Turchanin, Temperature-composition dependence of thermodynamic mixing functions of liquid alloys of copper with rare-earth metals, Powder Metallurgy and Metal Ceramics. 50 (2011) 512-527.

DOI: 10.1007/s11106-011-9354-5

Google Scholar