Texture of Hot-Rolled Sheet Fe-3% Si Alloy

Article Preview

Abstract:

Using the method of orientation microscopy, based on electron backscatter diffraction (EBSD), the texture of Fe–3% Si alloy sheet, produced by hot rolling at 1280 – 920 °C with a total strain exceeding 95 %, was characterized. The texture sheet in the surface region and in the central region consists of a set of stable orientations. The surface region mainly consists of recrystallization orientations; the texture of the central region is formed by a set of deformation orientations. The surface orientations of the sheet are rotated by 90° around the transfer direction relative orientations of the central region. The recrystallization texture components reproduce deformation texture components. Recrystallization replaces texture in the local region. With transverse flow (near the edges) in hot rolling, the stable orientation {112}<110> is formed in the surface region. The recrystallization process does not take place at the edges of the strip.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

895-899

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Morito, M. Komatsubara, and Y. Shimizu, History and recent development of grain oriented electrical steel at Kawasaki Steel, Kawasaki Steel Tech. Rep. 39 (1998) 3-12.

Google Scholar

[2] Y. Ushigami, M. Mizokami, M. Fujikura, et al., Recent development of low-loss grain-oriented silicon steel, J. Magn. Magn. Mater. 254-255 (2003) 307-314.

DOI: 10.1016/s0304-8853(02)00933-2

Google Scholar

[3] K. Günther, G. Abbruzzese, S. Fortunati, and G. Ligi, Recent technology developments in the production of grain-oriented electrical steel, Steel Res. Int. 76 (2005) 413-421.

DOI: 10.1002/srin.200506030

Google Scholar

[4] Z. Xia, Y. Kang, and Q. Wang, Developments in the production of grain-oriented electrical steel, J. Magn. Magn. Mater. 320 (2008) 3229-3233.

DOI: 10.1016/j.jmmm.2008.07.003

Google Scholar

[5] M.L. Lobanov, G.M. Rusakov, and A.A. Redikul'tsev, Electrical anisotropic steel. Part I. History of development, Met Sci Heat Treat. 53 (2011) 326-332.

DOI: 10.1007/s11041-011-9391-1

Google Scholar

[6] M.L. Lobanov, G.M. Rusakov, and A.A. Redikul'tsev, Electrical anisotropic steel. Part II. State-of-the-art, Met Sci Heat Treat. 53 (2011) 355-359.

DOI: 10.1007/s11041-011-9397-8

Google Scholar

[7] Hai-Tao Liu, Sheng-Jie Yao, Yu Suna, Fei Gao, Hong-Yu Song, Guo-Huai Liu, Lei Li, Dian-Qiao Geng, Zhen-Yu Liu, Guo-Dong Wang, Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting, Mater. Charact. 106 (2015).

DOI: 10.1016/j.matchar.2015.06.010

Google Scholar

[8] S. Fortunati, G.C. Abbruzzese, S. Cicalè, New Frontiers for Grain Oriented Electrical Steels: Products and Technologies. From 7th International Conference on Magnetism and Metallurgy_WMM16, (2016).

Google Scholar

[9] Verbeken, K., Schneider, J., Verstraete, J., Hermann, H., and Houbaert, Y. Effect of hot and cold rolling on grain size and texture in Fe-2. 4wt%Si strips, IEEE Trans on Magn. 44 (2008) 3820-3823.

DOI: 10.1109/tmag.2008.2001318

Google Scholar

[10] J. Huñady, M. Černik, E.J. Hilinski, M. Predmerský, A. Magurova, Influence of chemistry and hot rolling conditions on high permeability non-grain oriented silicon steel, J. Magn. Magn. Mater. 304 (2006) e620-e623.

DOI: 10.1016/j.jmmm.2006.02.213

Google Scholar

[11] J. Sidor, K. Verbeken, E. Gomez, J. Schneider, P. Rodriguez, L. Kesten, Through process texture evolution and magnetic properties of high Si non-oriented electrical steels, Mater. Charact. 71 (2012) 49-57.

DOI: 10.1016/j.matchar.2012.06.006

Google Scholar

[12] G.M. Rusakov, M.L. Lobanov, A.A. Redikul'tsev, A.S. Belyaevskikh, Special Misorientations and Textural Heredity in the Commercial Alloy Fe–3% Si, Phys. Metals Metallogr. 115 (2014) 775-785.

DOI: 10.1134/s0031918x14080134

Google Scholar

[13] A. Volodarskaja, V. Vodárek, J. Holešinský, S. Miklušová, O. Žáček, Analysis of microstructure and microtexture in grain-oriented electrical steel (GOES) during manufacturing process, Metalurgija 54 (2015) 4, 615-618.

DOI: 10.1016/j.mspro.2016.03.014

Google Scholar

[14] M.L. Lobanov, S.V. Danilov, V.I. Pastukhov, S.A. Averin, Y.Y. Khrunyk, , A.A. Popov, The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Des. 109 (2016) 251-255.

DOI: 10.1016/j.matdes.2016.06.103

Google Scholar

[15] V. Ya. Goldshtein, S.V. Pashchenko, S.N. Grazhdankin, S.G. Nitskaya, S.M. Vladimirov, Structure formation in hot rolling of alloy Fe – 3% Si, Phys. Metals Metallogr. 50 (1980) 1213-1217.

Google Scholar

[16] Y. Shimizu, Y. Ito, Y. Iida, Formation of the Goss orientation near the surface of 3 pct silicon steel during rolling, Metall. Trans. A 17 (1986) 1323-1334.

DOI: 10.1007/bf02650113

Google Scholar

[17] Hong-YuSong, Hai-TaoLiu, Hui-Hu Lu, Hao-Ze Li, Wen-Qiang Liu, Xiao-Ming Zhang, Guo-Dong Wang, Effect of hot rolling reduction on microstructure, texture and ductility of strip-cast grain-oriented silicon steel with different solidification structures, Mater. Sci. Eng. A-Struct. Mater. 605 (2014).

DOI: 10.1016/j.msea.2014.03.052

Google Scholar

[18] M.L. Lobanov, A.A. Redikul'tsev, G.M. Rusakov, S.V. Danilov, Effect of carbon on texture formation in electrical steel Fe – 3% Si under hot rolling, Met Sci Heat Treat. 56 (2015) 646-649.

DOI: 10.1007/s11041-015-9815-4

Google Scholar

[19] Ya.D. Vishnyakov, A.A. Babareko, Teoriya obrazovaniya tekstur v metallakh i splavakh (Theory of Texture Formation in Metals and Alloys), Nauka, Moscow, (1979).

Google Scholar

[20] M.A. Shtremel', Prochnost' splavov (Alloy Strength), Vol. 2, Izd. vo MISIS, Moscow, (1997).

Google Scholar

[21] V.F. Lifanov, Prokatka trasnformatornoi stali (Rolling of Transformer Steel), Metallurgiya, Moscow, (1975).

Google Scholar

[22] M. Hölscher, D. Raabe, K. Lücke, Relationship between rolling textures and shear textures in F.C.C. and B.C.C. metals, Acla metali mater. 42 (1994) 879-886.

DOI: 10.1016/0956-7151(94)90283-6

Google Scholar

[23] G.M. Rusakov, M.L. Lobanov, A.A. Redikul'tsev, I.V. Kagan, Reorientation of Body Centered Cubic Single Crystals in Cold Rolling, Steel Trans. 40 (2010) 219-224.

DOI: 10.3103/s096709121003006x

Google Scholar