[1]
O. Engler, J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications – a review, Mater. Sci. Eng. A 336 (2002) 249-262.
DOI: 10.1016/s0921-5093(01)01968-2
Google Scholar
[2]
J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater. 61 (2013) 818-843.
DOI: 10.1016/j.actamat.2012.10.044
Google Scholar
[3]
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A 280 (2000) 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[4]
V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, S.K. Mishra, Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet, Mater. Sci. Eng. A 679 (2017) 56-65.
DOI: 10.1016/j.msea.2016.10.027
Google Scholar
[5]
A.S. Khan, R. Kazmi, A. Pandey, T. Stoughton, Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part-I: A very low work hardening aluminum alloy (Al6061-T6511), Int. J. Plast. 25 (2009) 1611-1625.
DOI: 10.1016/j.ijplas.2008.07.003
Google Scholar
[6]
G. Wassermann, J. Grewen, Texturen metallischer Werkstoffe, Springer, Berlin, (1962).
DOI: 10.1007/978-3-662-13128-2
Google Scholar
[7]
M.L. Lobanov, A.A. Redikul'tsev, G.M. Rusakov, S.V. Danilov, Interrelation Between the Orientations of Deformation and Recrystallization in Hot Rolling of Anisotropic Electrical Steel, Met Sci Heat Treat. 57 (2015) 492-497.
DOI: 10.1007/s11041-015-9910-6
Google Scholar
[8]
J. Hirsch, Textures in industrial aluminum alloys, Advances in the Metallurgy of Aluminum Alloys, (2001) 276-281.
Google Scholar
[9]
O. Engler, C. Schafer, H. -J. Brinkman, Crystal-Plasticity Simulation of the Correlation of Microtexture and Roping in AA 6xxx Al-Mg-Si Sheet Alloys for Automotive Applications, Acta Mater. 60 (2012) 5217-5232.
DOI: 10.1016/j.actamat.2012.06.039
Google Scholar
[10]
S. Mishra, K. Kulkarni, N.P. Gurao, Effect of Crystallographic Texture on Precipitation Induced Anisotropy in an Aluminium Magnesium Silicon Alloy, Mater. Des. 87 (2015) 507-519.
DOI: 10.1016/j.matdes.2015.08.008
Google Scholar
[11]
Yu.N. Loginov, M.A. Golovnin, M.L. Lobanov, N.M. Doroshenko, Investigation of the Effect of a Technology for Al-Mg-Si Alloy Flat Product Manufacture on Anisotropy of Properties, Technology of Light Alloys. 3 (2016) 69-74.
Google Scholar
[12]
L. Li, E. A. Flores-Johnson, L. Shen, G. Proust, Z. Chen, Effects of Heat Treatment and Strain Rate on the Microstructure and Mechanical Properties of 6061 Al Alloy, Int. J. Damage Mech. 25 (2016) 26-41.
DOI: 10.1177/1056789515569088
Google Scholar
[13]
Y. Shen, J. Garnier, L. Allais, J. Crepin, O. Ancelet, J. -M. Hiver, Experimental and Numerical Characterization of Anisotropic Damage Evolution of Forged Al6061-T6 Alloy, Procedia Engineering. 10 (2011) 3429-3434.
DOI: 10.1016/j.proeng.2011.04.565
Google Scholar
[14]
I.Y. Pyshmintsev, A.O. Struin, A.M. Gervasyev, M.L. Lobanov, G.M. Rusakov, S.V. Danilov, A.B. Arabey, Effect of Bainite Crystallographic Texture on Failure of Pipe Steel Sheets Made by Controlled Thermomechanical Treatment, Metallurgist. 60 (2016).
DOI: 10.1007/s11015-016-0306-7
Google Scholar
[15]
G.M. Rusakov, M.L. Lobanov, A.A. Redikul'Tsev, A.S. Belyaevskikh, Special Misorientations and Textural Heredity in the Commercial Alloy Fe-3% Si, Phys. Metals Metallogr. 115 (2014) 775-785.
DOI: 10.1134/s0031918x14080134
Google Scholar
[16]
A.S. Belyaevskikh, M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev, Improving the Production of Superthin Anisotropic Electrical Steel, Steel Transl. 45 (2015) 982-986.
DOI: 10.3103/s0967091215120037
Google Scholar
[17]
M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev, Electrotechnical Anisotropic Steel. Part 1. History of Development, Met Sci Heat Treat. 53 (2011) 326-332.
DOI: 10.1007/s11041-011-9391-1
Google Scholar
[18]
M. Hölscher, D. Raabe, K. Lücke, Relationship between rolling textures and shear textures in f. c. c. and b. c. c. metals, Acta metallurgica et materialia. 42 (1994) 879-886.
DOI: 10.1016/0956-7151(94)90283-6
Google Scholar
[19]
G. Sachs, Zur Ableitung einer Fliessbedingung, Zeitschrift des Vereines Deutscher Ingenieure. 72 (1928) 734-736.
Google Scholar
[20]
G.I. Taylor, Plastic Strain in Metals, Journal of the Institute of Metals. 62 (1938) 307-324.
Google Scholar
[21]
F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, ELSEVIER Ltd, Oxford, (2004).
Google Scholar
[22]
J. Hirsch, K. Lücke, Overview No. 76 Parts I to III, Acta Metall. 36 (1988) 2863- 2927.
Google Scholar
[23]
Cl. Maurice, J.H. Driver, Hot rolling textures of fcc metals – Part I. Experimental results on Al single and polycrystals, Acta Mater. 45 (1997) 4627-4638.
DOI: 10.1016/s1359-6454(97)00115-8
Google Scholar
[24]
G.M. Rusakov, A.G. Illarionov, Y.N. Loginov, M.L. Lobanov, A.A. Redikul'tsev, Interrelation of Crystallographic Orientations of Grains in Aluminum Alloy AMg6 Under Hot Deformation and Recrystallization, Met Sci Heat Treat. 56 (2015) 650-55.
DOI: 10.1007/s11041-015-9816-3
Google Scholar
[25]
J. Hirsch, Texture evolution during rolling of aluminium alloys, TMS Light Metals, (2008) 1071-1077.
Google Scholar
[26]
J. Hirsch, Textures in Industrial Processes and Products, Materials Science Forum. 702-703 (2012) 18-25.
DOI: 10.4028/www.scientific.net/msf.702-703.18
Google Scholar