[1]
N.T. Tihontseva, P. Yu. Gorozhanin, S. Yu. Zhukova, M.N. Lefler, V. M. Farber, The search for compositions and heat treatment of high strength casing and tubing, Steel. 8 (2006) 70-73.
Google Scholar
[2]
V.M. Farber, Ways to improve the structural strength of the pipe, Achievement in the theory and practice of pipe production, Yekaterinburg, (2004) 390-394.
Google Scholar
[3]
M.A. Smirnov, V.M. Schastlivtsev, L.G. Zhuravlev, Fundamentals of heat treatment of steel, Science and Technology, Moscow, (2002) 338-343.
Google Scholar
[4]
R. Lagneborg, Role of vanadium micro-alloyed steels, State Scientific Center of the Russian Federation, the Ural Institute of Metals, Ekaterinburg, (2001) 88-91.
Google Scholar
[5]
N.P. Anoufriev, K.A. Laev, A.A. Esaulkov, Development sparingly alloyed chrome-molybdenum steel for the manufacture of casing high strength groups, Proceedings of the XV International Summer School of Metallurgists, Ekaterinburg, (2014) 15-18.
Google Scholar
[6]
M.A. Smirnov, V.M. Schastlivtsev, L.A. Zhuravlev, Basics of heat treatment of steel, Science and Technology, Moscow. (2002) 414-419.
Google Scholar
[7]
I.E. Dolzhenkov, Intensive technologies of hardening of metal, pipes and metal, Steel. 10 (1986) 69-73.
Google Scholar
[8]
S.S. Dyachenko, Heredity in phase transformations: the mechanism and influence on the properties, MiTOM. 4 (2000) 14-19.
Google Scholar
[9]
F.L.G. Oliveira, M.S. Andrade, A.B. Cota, Kinetics of austenite formation during continuous heating in a low carbon steel, Materials Characterization. 58 (2007) 256-261.
DOI: 10.1016/j.matchar.2006.04.027
Google Scholar
[10]
R.H. Kane, N.J. Grant, Recrystallization and grain refinement, Ultrafine grains in metals, Metallurgy, Moscow, (1973) 164-181.
Google Scholar
[11]
Yu. Ivanisenko, Shear-induced α→γ transformation in nanoscale Fe-C composite, Acta Mater. 54 (2006) 1659-1669.
DOI: 10.1016/j.actamat.2005.11.034
Google Scholar
[12]
V.N. Danchenko, The technology of pipe production, Intermet Engineering, Moscow, (2002) 432-438.
Google Scholar
[13]
L.F. Porter, D.S. Dobkovski, Regulation of the grain size by thermal cycling, Ultrafine grains in metals, Metallurgy, Moscow, (1973) 135-164.
Google Scholar
[14]
L. Du, S. Yao, X. Liu, G. Wang, Growth behavior of ultrafine austenite grains in microalloyed steel, Acta Metallurgica Sinica. 22(1) (2009) 7-12.
DOI: 10.1016/s1006-7191(08)60064-2
Google Scholar
[15]
A.A. Baranov, Structural changes during thermal cycling Metal Processing, MiTOM. 12 (1983) 2-10.
Google Scholar
[16]
R.L. Tofpenets, Physical fundamentals of thermal cycling aging alloys, Nauka i tehnika, Minsk, (1992) 158-164.
Google Scholar
[17]
V.K. Fedyukin, Method of thermal cycling treatment of metallic materials, (1979) 19-22.
Google Scholar
[18]
S.S. Yugai, L.M. Kleiner, A.A. Shatsov, N.N. Mitrokhovich, Structural heredity in low-carbon martensitic steels, Metal science and heat treatment. 46(11-12) (2004) 539-544.
DOI: 10.1007/s11041-005-0015-5
Google Scholar
[19]
I.V. Ryaposov, L.M. Kleiner, A. Shatsov, Formation of nano and submicron size characteristic of the iron alloy structure thermal influence, Advanced technologies and materials, Publishing house of Perm State Technical University, Perm, (2008).
Google Scholar
[20]
N.D. Tomashov, G.P. Chernov, Corrosion theory and corrosion-resistant structural alloys, Metallurgy, Moscow, (1986) 341-358.
Google Scholar
[21]
M.A. Lucio-Garcia, Effect of heat treatment on H2S corrosion of a micro-alloyed C-Mn steel, Corrosion Science. 51 (2009) 2380-2386.
DOI: 10.1016/j.corsci.2009.06.022
Google Scholar