[1]
A.N. Smirnov, V.M. Safonov, L.V. Dorokhova, A. Yu. Tsuprun, The metallurgical mini-plants, Donetsk, Nord-Press, (2005).
Google Scholar
[2]
A.N. Smirnov, A.L. Podkorytov, Modern CCM: prospects for development of technology and equipment, Metallurgical and Mining Industry, 2 (2010) 61-65.
Google Scholar
[3]
A.N. Smirnov, V.M. Safonov, The modern level and the future of electric steel production, Steel, 1 (2009) 47-51.
Google Scholar
[4]
Temporary technological instruction TTI 09546947-№005-013-2013. Continuous casting on the CCM], Tyumen, UMMC Steel, (2013).
Google Scholar
[5]
M. Ya. Brovman, Continuous casting of metals, Moscow, Ecomet, (2007) 484.
Google Scholar
[6]
V.M. Parshin, L.V. Bulanov, Continuous casting of steel, Lipetsk, OJSC NLMK, (2011).
Google Scholar
[7]
A.N. Smirnov, S.V. Kuberskiy, E.V. Stepan, Continuous casting of steel, Donetsk, Donetsk National Technical University, (2011).
Google Scholar
[8]
A.N. Smirnov, S.V. Kuberskiy, A.L. Podkorytov et al., Continuous casting concast billets: Monograph, Donetsk, Digital printing press, (2012).
Google Scholar
[9]
H. Pan, Control Technology of Internal Quality for CC Billet, Advanced Materials Research, 415-417 (2012) 1729-1734.
DOI: 10.4028/www.scientific.net/amr.415-417.1729
Google Scholar
[10]
GOST 1050-88. Graded rolled, calibrated, high-quality carbon structural steel with special surface finish, Moscow, USSR State Committee on Standards, (1991).
Google Scholar
[11]
Industry Standard OST 4. 14. 73. Steel. Control method macrostructure cast billet (ingot) produced through continuous casting, Moscow, Ministry of ferrous metallurgy of the USSR, (1973).
Google Scholar
[12]
G. Alvarez de Toledo, A. Arteaga, J.J. Laraudogoitia, Continuous Casting of Microalloyed Steels. Influence of Composition and Operational Parameters in Billet Surface Cracking, Materials Science Forum, 500-501 (2005) 163-170.
DOI: 10.4028/www.scientific.net/msf.500-501.163
Google Scholar
[13]
X.H. Zhu, L.H. Zhu, Y. Liu, T.L. Liu, Peritectic-Steel Mold Fluxes, Advanced Materials Research, 567 (2012) 75-78.
DOI: 10.4028/www.scientific.net/amr.567.75
Google Scholar
[14]
E.A. Shevchenko, A.M. Stolyarov, A.N. Shapovalov, K.V. Baranchikov, Transverse distortion of continuous-cast slab, Steel in Translation. 1 (2014) 17-20.
DOI: 10.3103/s0967091214010161
Google Scholar
[15]
H.Y. Tang, H.B. Wang, H.S. Li, J.S. Li, Q.G. Wang, Researches on the Behavior of Carbon and Sulfur Segregations of 82B Billet, Advanced Materials Research, 399-401 (2012) 206-210.
DOI: 10.4028/www.scientific.net/amr.399-401.206
Google Scholar
[16]
D.Y. Lin, S.M. Yang, The Formation and Occurrence of Non-Metallic Inclusions of Si-Doped Steel during Continuous Casting, Key Engineering Materials, 479 (2011) 13-21.
DOI: 10.4028/www.scientific.net/kem.479.13
Google Scholar
[17]
S. Zhao, D.L. Wei, J.H. Xu, H. Chen, L. Zhang, Influence of Steel Strip-Feeding Process on Density and Segregation of Casting Ingot, Materials Science Forum, 872 (2016) 45-49.
DOI: 10.4028/www.scientific.net/msf.872.45
Google Scholar
[18]
E.A. Shevchenko, A.M. Stolyarov, A.N. Shapovalov, K.V. Baranchikov, Preventing convexity at the narrow faces of continuous-cast billet, Steel in Translation. 1 (2015) 29-32.
DOI: 10.3103/s096709121501012x
Google Scholar
[19]
Atlas of Defects in Castings, Institute of British Foundrymen, 1950. 75p.
Google Scholar
[20]
V.P. Pravosudovich, B.P. Sokurenko, V.N. Danchenko et al., Defects of steel ingots and rolled products: Handbook, Moscow, Intermet Engineering, (2006).
Google Scholar