[1]
J. Li, Z. Shan and E. Ma, Elastic strain engineering for unprecedented materials properties, MRS Bulletin, 39 (2014) 108–114.
DOI: 10.1557/mrs.2014.3
Google Scholar
[2]
X. Qian, H. Park, Strain effects on the SERS enhancements for spherical silver nanoparticles, Nanotechnology, 21 (2010) 365704.
DOI: 10.1088/0957-4484/21/36/365704
Google Scholar
[3]
B. Yildiz, Stretching, the energy landscape of oxides – Effects on electrocatalysis and diffusion, MRS Bulletin, 39 (2014) 147–156.
DOI: 10.1557/mrs.2014.8
Google Scholar
[4]
B.B. Badmaev, S.A. Bal'zhinov, B.B. Damdinov et al, Low-frequency shear elasticity of liquids, Acoust. Phys., 56 (2010) 640-643.
DOI: 10.1134/s1063771010050076
Google Scholar
[5]
B.B. Badmaev, B.B. Damdinov, D.S. Sanditov, Low-frequency shear parameters of liquid viscoelastic materials, Acoust. Phys., 50 (2004) 121-125.
DOI: 10.1134/1.1675864
Google Scholar
[6]
U.B. Bazaron, B.V. Derjaguin, A.V. Bulgadaev, Measurement of shear elasticity of liquids and their boundary layers of the resonance method, Dokl. AN SSSR, 166 (1966) 639-646.
Google Scholar
[7]
Bazaron U.B., Derjaguin B.V., Budaev O.R. Measurement of the complex shear modulus of liquids, Dokl. AN SSSR, 205 (1972) 1324–1327.
Google Scholar
[8]
U. B. Bazaron, Low frequency shear elasticity of liquids, Ulan-Ude: Sib. Div. RAS, (2000).
Google Scholar
[9]
B.B. Damdinov, B.B. Badmaev, T.S. Dembelova et al, Study of shear properties of nanoparticle suspensions, Procedia Chemistry, 10 (2014), 2–6.
DOI: 10.1016/j.proche.2014.10.002
Google Scholar
[10]
B.B. Badmaev, T. S Dembelova, B.B. Damdinov, Viscoelastic relaxation in fluids, Bulletin of the Russian Academy of Sciences. Physics, 79 (2015) 1301–1305.
DOI: 10.3103/s1062873815100044
Google Scholar
[11]
D.D. Joseph, O. Riccius and M. Arney, Shear-wave speeds and elastic moduli for different liquids, Part I. Theory, J. Fluid Mech. 171 (1986) 289-308.
DOI: 10.1017/s0022112086001465
Google Scholar
[12]
D.D. Joseph, O. Riccius and M. Arney, Shear-waves speed and elastic moduli for different liquids, Part II. Experiments, J. Fluid Mech. 171 (1986) 309-338.
DOI: 10.1017/s0022112086001465
Google Scholar
[13]
T. Ohsawa and Y. Wada, Acoustic relaxations in toluene and alcohols in the frequency range of 10 to 300 kHz measured by the resonance reverberation method, Japanese J. Applied Physics, 8 (1969) 411-420.
DOI: 10.1143/jjap.8.411
Google Scholar
[14]
Yu.P. Syrnikov, Modern concepts of thermal motion in a fluid and the concept of positive and negative hydration, J. of Struct. Chem., 25 (1984) 51-56.
Google Scholar
[15]
M.N. Rodnikova, Microdynamics of hydration In: Method of molecular dynamics in physical chemistry,. M.: Nauka, 1996 – 334 p.
Google Scholar